organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­nitro­phen­yl)-N′-[nitro­(phenyl)­methyl­ene]hydrazine

aDepartment of Chemistry and Chemical Engineering, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: chunlanyuan@126.com

(Received 4 September 2008; accepted 4 November 2008; online 8 November 2008)

The title compound, C13H9N5O6, contains three nitro groups. It is prepared by the reaction of benzaldehyde 2,4-dinitro­phenyl­hydrazone with nitric oxide at ambient temperature. The imine group is nearly coplanar with the (2,4-dinitro­phen­yl)­hydrazine unit. The second benzene ring and the third nitro group are twisted away from this plane, with dihedral angles of 48.5 (3) and 15.2 (3)°, respectively. Weak intra­molecular N—H⋯O inter­actions are observed.

Related literature

For related literature regarding NO, see: Garthwaite et al. (1989[Garthwaite, J., Garthwaite, G., Palmer, R. M. & Moncada, S. (1989). Eur. J. Pharmacol. 172, 413-417. ]); Murad (1999[Murad, F. (1999). Angew. Chem. Int. Ed. 38, 1857-1868.]). For aryl­hydrazones, see: Chan et al. (2001[Chan, W. H., Shuang, S. & Choi, M. M. F. (2001). Analyst, 126, 720-723.]); Försterling & Barnes (2001[Försterling, F. H. & Barnes, C. E. (2001). J. Organomet. Chem. 617, 561-570.]); Paschalidis et al. (2000[Paschalidis, D. G., Tossidis, I. A. & Gdaniec, M. (2000). Polyhedron, 19, 2629-2637.]). For the structure of benzaldehyde 2,4-dinitro­phenyl­hydrazone, see Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N5O6

  • Mr = 331.25

  • Orthorhombic, P b c a

  • a = 6.9790 (1) Å

  • b = 13.469 (2) Å

  • c = 29.448 (8) Å

  • V = 2768.1 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 289 (2) K

  • 0.52 × 0.48 × 0.22 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 3591 measured reflections

  • 3018 independent reflections

  • 1537 reflections with I > 2σ(I)

  • Rint = 0.0000

  • 3 standard reflections every 97 reflections intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.059

  • S = 0.98

  • 3018 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2 0.894 (15) 1.966 (15) 2.591 (2) 125.7 (13)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitric oxide (NO) has been found recently to play an important role in chemistry, biology and medicine (Garthwaite et al., 1989; Murad, 1999). In recent years, arylhydrazones have been utilized for the analysis of carbonyl compounds (Chan et al., 2001). Some arylhydrazones and their nitration products were found to have pharmacological properties (Försterling & Barnes, 2001; Paschalidis et al., 2000). Here we report the reaction of NO with an arylhydrazone, where the title compound, (I), was obtained by the reaction of NO with benzaldehyde-2,4-dinitrophenylhydrazone.

The structure of (I) (Fig.1), shows that this reaction resulted in the addition of a third NO2 group, which is attached to the carbon atom C7, with an O1—N3—C7—C6 torsion angle of -11.6 (3)°. The imine double bond in benzaldehyde 2,4-dinitrophenylhydrazone was preserved, as indicated by the N1C7 distance [1.2779 (19) Å] being similar to that of 1.275 (2)Å in the original compound (Shan et al., 2003). The other two nitro groups are co-planar with the benzene ring that they are attached to, with O4—N4—C12—C13 and O5—N5—C11—C12 torsion angles of 7.0 (3) and 0.0 (3)° respectively. There is a weak intramolecular N2—H(2 N)···O2 interaction.

Related literature top

For related literature regarding NO, see: Garthwaite et al. (1989); Murad (1999). For literature regarding arylhydrazones, see: Chan et al. (2001); Försterling & Barnes (2001); Paschalidis et al. (2000). For the structure of benzaldehyde 2,4-dinitrophenylhydrazone, see Shan et al. (2003).

Experimental top

A stock solution was prepared by dissolving 0.5 mol benzaldehyde -2,4-dinitrophenylhydrazine in 100 ml dry CH2Cl2. NO was produced by the reaction of 1 M H2SO4 solution trickled into an aqueous saturated NaNO2 solution through a funnel at a pre-determined speed, while stirring under an argon atmosphere. NO was carried by argon and purified by passing it through a series of scrubbing bottles containing 4M NaOH, distilled water and CaCl2 in turn. All the above bottles were under an argon atmosphere. The purified NO was bubbled through a previously degassed stirred stock solution at room temperature for an appropriate time. After the reaction was completed, as indicated by TLC, the reaction mixture was dried with anhydrous MgSO4, concentrated under vacuum and purified by column chromatography on silica–gel (200–300 mesh, ethyl acetate–hexane) yielding the pure title compound.

Refinement top

Atom H2N was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.89 Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93Å and with Uiso(H)= 1.2Ueq(C,N).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the dimer formation in (I),showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are not shown.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis.
N-(2,4-Dinitrophenyl)-N'-[nitro(phenyl)methylene]hydrazine top
Crystal data top
C13H9N5O6Dx = 1.590 Mg m3
Mr = 331.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 26 reflections
a = 6.9790 (1) Åθ = 3.4–12.5°
b = 13.469 (2) ŵ = 0.13 mm1
c = 29.448 (8) ÅT = 289 K
V = 2768.1 (9) Å3Prism, yellow
Z = 80.52 × 0.48 × 0.22 mm
F(000) = 1360
Data collection top
Siemens P4
diffractometer
Rint = 0.000
Radiation source: normal-focus sealed tubeθmax = 27.0°, θmin = 1.4°
Graphite monochromatorh = 08
ω scansk = 017
3591 measured reflectionsl = 037
3018 independent reflections3 standard reflections every 97 reflections
1537 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0116P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3018 reflectionsΔρmax = 0.20 e Å3
222 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00375 (18)
Crystal data top
C13H9N5O6V = 2768.1 (9) Å3
Mr = 331.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.9790 (1) ŵ = 0.13 mm1
b = 13.469 (2) ÅT = 289 K
c = 29.448 (8) Å0.52 × 0.48 × 0.22 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.000
3591 measured reflections3 standard reflections every 97 reflections
3018 independent reflections intensity decay: 1.0%
1537 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.20 e Å3
3018 reflectionsΔρmin = 0.14 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2792 (2)0.72703 (10)0.26225 (4)0.0655 (5)
O20.4128 (2)0.58358 (10)0.27056 (4)0.0696 (5)
O30.5250 (2)0.37214 (9)0.30832 (4)0.0587 (4)
O40.5513 (2)0.23410 (9)0.34501 (4)0.0668 (5)
O50.7770 (3)0.22039 (11)0.49622 (4)0.0826 (6)
O60.8082 (2)0.35414 (10)0.53534 (4)0.0827 (6)
N10.5194 (2)0.63895 (10)0.35787 (5)0.0411 (4)
N20.5362 (2)0.54088 (11)0.35121 (5)0.0423 (4)
N30.3764 (3)0.66797 (13)0.28337 (5)0.0489 (5)
N40.5574 (2)0.32486 (12)0.34320 (5)0.0463 (4)
N50.7673 (3)0.31066 (14)0.50021 (5)0.0599 (5)
C10.3799 (3)0.82777 (13)0.38520 (6)0.0409 (5)
H10.34590.77700.40500.049*
C20.3749 (3)0.92498 (14)0.39969 (6)0.0459 (5)
H20.33720.93940.42930.055*
C30.4251 (3)1.00085 (14)0.37089 (6)0.0490 (6)
H30.42231.06630.38100.059*
C40.4797 (3)0.97942 (14)0.32689 (6)0.0509 (6)
H40.51371.03070.30730.061*
C50.4842 (3)0.88204 (14)0.31166 (6)0.0449 (5)
H50.51950.86820.28190.054*
C60.4359 (3)0.80519 (13)0.34096 (6)0.0368 (5)
C70.4514 (3)0.69945 (13)0.32858 (6)0.0387 (5)
C80.5928 (3)0.48344 (13)0.38722 (6)0.0376 (5)
C90.6383 (3)0.52778 (13)0.42912 (6)0.0433 (5)
H90.62950.59640.43220.052*
C100.6953 (3)0.47186 (14)0.46549 (6)0.0453 (5)
H100.72710.50230.49280.054*
C110.7052 (3)0.37003 (14)0.46136 (6)0.0424 (5)
C120.6595 (3)0.32304 (13)0.42157 (6)0.0422 (5)
H120.66540.25420.41940.051*
C130.6048 (3)0.37961 (13)0.38483 (6)0.0376 (5)
H2N0.508 (2)0.5131 (11)0.3244 (5)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0715 (11)0.0759 (10)0.0491 (9)0.0080 (10)0.0181 (8)0.0017 (8)
O20.1089 (14)0.0566 (9)0.0433 (8)0.0080 (10)0.0062 (9)0.0146 (7)
O30.0786 (12)0.0550 (9)0.0426 (8)0.0004 (9)0.0118 (8)0.0065 (7)
O40.0932 (13)0.0360 (8)0.0711 (10)0.0018 (9)0.0160 (9)0.0131 (7)
O50.1295 (16)0.0517 (10)0.0666 (10)0.0200 (12)0.0158 (11)0.0040 (9)
O60.1324 (17)0.0721 (11)0.0437 (8)0.0087 (11)0.0200 (10)0.0044 (8)
N10.0411 (11)0.0381 (9)0.0443 (9)0.0011 (9)0.0036 (8)0.0007 (8)
N20.0489 (12)0.0416 (10)0.0365 (10)0.0013 (9)0.0036 (9)0.0058 (8)
N30.0519 (13)0.0583 (12)0.0366 (10)0.0064 (11)0.0015 (9)0.0009 (9)
N40.0429 (12)0.0467 (11)0.0492 (10)0.0015 (9)0.0012 (10)0.0086 (9)
N50.0738 (15)0.0586 (13)0.0471 (11)0.0100 (12)0.0023 (11)0.0012 (10)
C10.0408 (13)0.0460 (12)0.0358 (11)0.0008 (11)0.0005 (10)0.0064 (9)
C20.0467 (13)0.0548 (13)0.0362 (11)0.0046 (12)0.0001 (10)0.0056 (10)
C30.0483 (14)0.0410 (12)0.0577 (13)0.0047 (11)0.0079 (12)0.0038 (11)
C40.0557 (15)0.0493 (13)0.0478 (12)0.0006 (12)0.0034 (12)0.0138 (10)
C50.0477 (14)0.0556 (13)0.0315 (10)0.0000 (11)0.0016 (10)0.0050 (10)
C60.0350 (12)0.0441 (11)0.0312 (10)0.0009 (10)0.0025 (9)0.0009 (9)
C70.0397 (13)0.0449 (12)0.0314 (10)0.0033 (11)0.0025 (10)0.0002 (9)
C80.0357 (12)0.0393 (11)0.0377 (11)0.0021 (10)0.0033 (10)0.0007 (9)
C90.0518 (14)0.0379 (11)0.0404 (11)0.0013 (11)0.0042 (10)0.0063 (9)
C100.0509 (15)0.0497 (12)0.0352 (11)0.0000 (12)0.0022 (10)0.0045 (10)
C110.0462 (14)0.0458 (12)0.0352 (10)0.0029 (12)0.0016 (10)0.0022 (10)
C120.0402 (12)0.0377 (11)0.0488 (12)0.0020 (10)0.0046 (10)0.0015 (10)
C130.0362 (12)0.0398 (11)0.0367 (10)0.0014 (10)0.0006 (10)0.0080 (9)
Geometric parameters (Å, º) top
O1—N31.2163 (17)C2—H20.9300
O2—N31.2244 (17)C3—C41.381 (2)
O3—N41.2296 (17)C3—H30.9300
O4—N41.2244 (17)C4—C51.386 (2)
O5—N51.2233 (17)C4—H40.9300
O6—N51.2227 (18)C5—C61.389 (2)
N1—C71.2779 (19)C5—H50.9300
N1—N21.3405 (18)C6—C71.474 (2)
N2—C81.371 (2)C8—C131.403 (2)
N2—H2N0.894 (15)C8—C91.407 (2)
N3—C71.492 (2)C9—C101.368 (2)
N4—C131.468 (2)C9—H90.9300
N5—C111.462 (2)C10—C111.379 (2)
C1—C21.378 (2)C10—H100.9300
C1—C61.394 (2)C11—C121.369 (2)
C1—H10.9300C12—C131.377 (2)
C2—C31.373 (2)C12—H120.9300
C7—N1—N2124.20 (15)C4—C5—H5120.0
N1—N2—C8117.91 (15)C6—C5—H5120.0
N1—N2—H2N121.5 (10)C5—C6—C1119.08 (16)
C8—N2—H2N120.6 (10)C5—C6—C7123.26 (16)
O1—N3—O2124.43 (17)C1—C6—C7117.56 (16)
O1—N3—C7117.78 (16)N1—C7—C6118.45 (16)
O2—N3—C7117.76 (17)N1—C7—N3123.46 (16)
O4—N4—O3123.17 (16)C6—C7—N3117.99 (16)
O4—N4—C13118.22 (16)N2—C8—C13122.75 (17)
O3—N4—C13118.61 (15)N2—C8—C9120.25 (16)
O6—N5—O5122.99 (18)C13—C8—C9116.98 (17)
O6—N5—C11118.00 (17)C10—C9—C8121.21 (17)
O5—N5—C11119.01 (17)C10—C9—H9119.4
C2—C1—C6120.27 (17)C8—C9—H9119.4
C2—C1—H1119.9C9—C10—C11119.55 (17)
C6—C1—H1119.9C9—C10—H10120.2
C3—C2—C1120.63 (17)C11—C10—H10120.2
C3—C2—H2119.7C12—C11—C10121.58 (18)
C1—C2—H2119.7C12—C11—N5119.07 (17)
C2—C3—C4119.61 (17)C10—C11—N5119.35 (17)
C2—C3—H3120.2C11—C12—C13118.75 (17)
C4—C3—H3120.2C11—C12—H12120.6
C3—C4—C5120.49 (18)C13—C12—H12120.6
C3—C4—H4119.8C12—C13—C8121.91 (17)
C5—C4—H4119.8C12—C13—N4116.14 (16)
C4—C5—C6119.90 (17)C8—C13—N4121.95 (17)
C7—N1—N2—C8173.30 (18)N2—C8—C9—C10179.95 (17)
C6—C1—C2—C30.1 (3)C13—C8—C9—C101.3 (3)
C1—C2—C3—C40.5 (3)C8—C9—C10—C111.2 (3)
C2—C3—C4—C50.0 (3)C9—C10—C11—C120.1 (3)
C3—C4—C5—C60.8 (3)C9—C10—C11—N5179.60 (17)
C4—C5—C6—C11.2 (3)O6—N5—C11—C12179.67 (19)
C4—C5—C6—C7175.08 (19)O5—N5—C11—C120.0 (3)
C2—C1—C6—C50.7 (3)O6—N5—C11—C100.2 (3)
C2—C1—C6—C7175.76 (18)O5—N5—C11—C10179.5 (2)
N2—N1—C7—C6178.19 (17)C10—C11—C12—C130.8 (3)
N2—N1—C7—N31.8 (3)N5—C11—C12—C13178.71 (17)
C5—C6—C7—N1137.61 (19)C11—C12—C13—C80.6 (3)
C1—C6—C7—N138.7 (3)C11—C12—C13—N4179.89 (16)
C5—C6—C7—N345.8 (3)N2—C8—C13—C12179.11 (17)
C1—C6—C7—N3137.86 (16)C9—C8—C13—C120.4 (3)
O1—N3—C7—N1164.76 (18)N2—C8—C13—N40.1 (3)
O2—N3—C7—N113.5 (3)C9—C8—C13—N4178.85 (16)
O1—N3—C7—C611.6 (3)O4—N4—C13—C127.0 (3)
O2—N3—C7—C6170.13 (18)O3—N4—C13—C12173.35 (17)
N1—N2—C8—C13176.35 (17)O4—N4—C13—C8172.31 (18)
N1—N2—C8—C92.3 (3)O3—N4—C13—C87.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.894 (15)1.966 (15)2.591 (2)125.7 (13)

Experimental details

Crystal data
Chemical formulaC13H9N5O6
Mr331.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)289
a, b, c (Å)6.9790 (1), 13.469 (2), 29.448 (8)
V3)2768.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.52 × 0.48 × 0.22
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3591, 3018, 1537
Rint0.000
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.059, 0.98
No. of reflections3018
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—C71.2779 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.894 (15)1.966 (15)2.591 (2)125.7 (13)
 

Acknowledgements

I am grateful for financial support from Foster Industrial Projects (grant No. 06JC25) of Shaanxi Province and the main project (grant No. 04JS37) of the Key Laboratory of Shaanxi Province, People's Republic of China.

References

First citationChan, W. H., Shuang, S. & Choi, M. M. F. (2001). Analyst, 126, 720–723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFörsterling, F. H. & Barnes, C. E. (2001). J. Organomet. Chem. 617, 561–570.  Google Scholar
First citationGarthwaite, J., Garthwaite, G., Palmer, R. M. & Moncada, S. (1989). Eur. J. Pharmacol. 172, 413–417.   CrossRef CAS PubMed Web of Science Google Scholar
First citationMurad, F. (1999). Angew. Chem. Int. Ed. 38, 1857–1868.  CrossRef Google Scholar
First citationPaschalidis, D. G., Tossidis, I. A. & Gdaniec, M. (2000). Polyhedron, 19, 2629–2637.  Web of Science CSD CrossRef CAS Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds