organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 3-(4-fluoro­anilino)-2-(4-meth­oxy­phen­yl)acrylate

aKey Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal College, Shangrao 334001, Jiangxi, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: shenyangzhou@163.com

(Received 21 October 2008; accepted 21 November 2008; online 26 November 2008)

In the title compound, C18H18FNO3, the dihedral angles between the two benzene rings and the plane through the acrylate group and the fluoro­phenyl ring are 61.58 (8) and 13.33 (9)°, respectively. Mol­ecules are linked into ribbons through C—H⋯O and N—H⋯O hydrogen bonds, and further linked by C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For related literature regarding the anti­microbial activity of 3-aryl­amino-2-aryl acrylates, see: Shi et al. (2007[Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404-406.]); Xiao et al. (2007[Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212-4219.], 2008[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]); Xue et al. (2007[Xue, J.-Y., Xiao, Z.-P., Shi, L., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 957-962.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18FNO3

  • Mr = 315.33

  • Monoclinic, P 21 /c

  • a = 19.000 (4) Å

  • b = 6.0400 (12) Å

  • c = 15.081 (3) Å

  • β = 109.64 (3)°

  • V = 1630.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.972, Tmax = 0.981

  • 3073 measured reflections

  • 2943 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.162

  • S = 1.02

  • 2943 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.49 3.401 (3) 167
N1—H1⋯O3ii 0.83 (2) 2.56 (3) 3.229 (3) 138 (2)
C16—H16BCg1iii 0.97 2.99 3.788 (3) 141
C18—H18ACg2iv 0.96 2.80 3.626 (3) 145
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z. Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Arylamino-2-aryl acrylates, enamines structurally like Schiff bases, show high antimicrobial activity (Xiao et al., 2007; Xue et al., 2007; Xiao et al., 2008; Shi et al. 2007), especially for bacteria. In a continuation of our work on the structural characterization of enamine derivatives, we report here the crystal structure of the title compound, (I) (Fig. 1).

The N1—H group lies approximately in the same planes as the fluorophenyl and acrylate groups (with dihedral angles of 4.7 (2) ° and 8.9 (2) °, respectively), suggesting that one of the p orbitals of N1 is conjugated with the π molecular orbitals of the two moieties, thus shortening both the C1—N1 (1.408 (3) Å) and C13—N1 (1.359 (3) Å) bonds. All other double and single bond lengths fall within normal values (Allen et al., 1987).

Molecules are linked into ribbons running along the b-axis via C—H···O and N—H···O hydrogen bonds (Fig. 2 and Table 1). These ribbons are interconnected via weak C16-H16B···π (centroid of C1 to C6) and C18-H18A···π (centroid of C7 to C12) interactions (Table 1 and Fig. 3).

Related literature top

For related literature regarding the antimicrobial activity of 3-arylamino-2-aryl acrylates, see: Shi et al. (2007); Xiao et al. (2007, 2008); Xue et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Equimolar quantities (6 mmol) of ethyl 2-(4-methoxyphenyl)-3- oxopropanoate (1.33 g) and 4-fluorobenzenamine (0.67 g) in absolute alcohol (18 ml) were heated at 344–354 K for 2 h. The excess solvent was removed under reduced pressure. The residue was purified by flash chromatography with EtOAc-petrolum ether (1:10) to afford two fractions. The first fraction gave the Z-isomer, and the second fraction, after partial solvent evaporation, furnished colorless blocks of (I) suitable for single-crystal structure determination.

Refinement top

The H atom bonded to N1 was located in a difference Fourier map. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for amino, aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for CH3 type H-atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXP97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound showing the ribbons connected by C—H···O and N—H···O hydrogen bonds (indicated by dashed lines), viewed along the b axis.
[Figure 3] Fig. 3. The crystal packing of the title compound, showing the linking of the hydrogen bonded ribbons by C—H···π interactions. Dashed lines indicate C—H···O, N—H···O and C-H···π interactions.
(E)-Ethyl 3-(4-fluoroanilino)-2-(4-methoxyphenyl)acrylate top
Crystal data top
C18H18FNO3F(000) = 664
Mr = 315.33Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.000 (4) ÅCell parameters from 1632 reflections
b = 6.0400 (12) Åθ = 1.4–24.7°
c = 15.081 (3) ŵ = 0.10 mm1
β = 109.64 (3)°T = 293 K
V = 1630.0 (6) Å3Block, colorless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2943 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω/2θ scansθmax = 25.3°, θmin = 1.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 2221
Tmin = 0.972, Tmax = 0.981k = 70
3073 measured reflectionsl = 018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.0162P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2943 reflectionsΔρmax = 0.15 e Å3
215 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C18H18FNO3V = 1630.0 (6) Å3
Mr = 315.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.000 (4) ŵ = 0.10 mm1
b = 6.0400 (12) ÅT = 293 K
c = 15.081 (3) Å0.30 × 0.30 × 0.20 mm
β = 109.64 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2943 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1807 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.026
3073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
2943 reflectionsΔρmin = 0.16 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78366 (12)0.7249 (4)0.02705 (17)0.0468 (6)
C20.86057 (14)0.7171 (5)0.0575 (2)0.0637 (8)
H20.88580.60950.10050.076*
C30.90034 (15)0.8673 (6)0.0246 (2)0.0733 (9)
H30.95230.86170.04510.088*
C40.86292 (16)1.0237 (5)0.0380 (2)0.0682 (9)
C50.78687 (17)1.0339 (5)0.0708 (2)0.0721 (9)
H50.76201.14030.11480.086*
C60.74779 (15)0.8829 (5)0.0373 (2)0.0640 (8)
H60.69580.88820.05880.077*
C70.64691 (12)0.3267 (4)0.14607 (16)0.0431 (6)
C80.59236 (13)0.1688 (4)0.10497 (18)0.0494 (7)
H80.60630.03380.08620.059*
C90.51803 (13)0.2090 (5)0.09161 (18)0.0513 (7)
H90.48250.10130.06390.062*
C100.49607 (13)0.4075 (4)0.11902 (17)0.0470 (6)
C110.54911 (13)0.5661 (4)0.16114 (19)0.0523 (7)
H110.53500.70020.18040.063*
C120.62356 (13)0.5233 (4)0.17434 (19)0.0510 (7)
H120.65910.63020.20320.061*
C130.76733 (13)0.4059 (4)0.12087 (17)0.0465 (6)
H130.81760.36990.13560.056*
C140.72695 (12)0.2824 (4)0.16064 (16)0.0433 (6)
C150.76226 (13)0.0959 (4)0.22121 (18)0.0458 (6)
C160.87264 (15)0.1081 (5)0.2948 (2)0.0669 (8)
H16A0.85500.25140.26710.080*
H16B0.86300.09600.35380.080*
C170.95460 (15)0.0844 (6)0.3113 (3)0.0887 (11)
H17A0.96370.10450.25300.133*
H17B0.98170.19410.35580.133*
H17C0.97090.06060.33580.133*
C180.39590 (15)0.6241 (5)0.1368 (2)0.0751 (9)
H18A0.42200.63740.20320.113*
H18B0.34320.61300.12550.113*
H18C0.40570.75210.10510.113*
F10.90279 (11)1.1721 (4)0.07006 (17)0.1125 (8)
H10.6954 (14)0.606 (4)0.0454 (19)0.059 (8)*
N10.74101 (12)0.5785 (4)0.06106 (16)0.0567 (6)
O10.73060 (10)0.0227 (3)0.26022 (14)0.0667 (6)
O20.83483 (9)0.0669 (3)0.23152 (13)0.0584 (5)
O30.42082 (9)0.4306 (3)0.10206 (13)0.0618 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (13)0.0536 (15)0.0482 (14)0.0053 (12)0.0170 (11)0.0019 (13)
C20.0465 (15)0.076 (2)0.0642 (17)0.0017 (15)0.0135 (13)0.0221 (16)
C30.0434 (15)0.093 (2)0.082 (2)0.0056 (16)0.0193 (15)0.026 (2)
C40.0596 (18)0.073 (2)0.082 (2)0.0085 (16)0.0371 (16)0.0172 (18)
C50.074 (2)0.065 (2)0.085 (2)0.0109 (16)0.0370 (17)0.0304 (18)
C60.0450 (15)0.0681 (19)0.078 (2)0.0063 (14)0.0193 (14)0.0157 (17)
C70.0403 (13)0.0433 (14)0.0443 (14)0.0067 (11)0.0125 (10)0.0005 (12)
C80.0456 (14)0.0464 (15)0.0548 (15)0.0018 (12)0.0150 (12)0.0075 (13)
C90.0412 (13)0.0540 (17)0.0528 (15)0.0131 (12)0.0081 (11)0.0127 (13)
C100.0361 (12)0.0550 (16)0.0482 (14)0.0008 (12)0.0118 (11)0.0038 (13)
C110.0490 (15)0.0417 (14)0.0668 (17)0.0045 (12)0.0202 (13)0.0085 (13)
C120.0449 (14)0.0364 (14)0.0694 (18)0.0074 (11)0.0164 (13)0.0033 (13)
C130.0364 (12)0.0493 (15)0.0502 (15)0.0021 (12)0.0097 (11)0.0004 (13)
C140.0410 (13)0.0406 (14)0.0471 (14)0.0060 (11)0.0133 (11)0.0046 (12)
C150.0441 (13)0.0422 (14)0.0521 (15)0.0065 (12)0.0174 (12)0.0088 (13)
C160.0616 (17)0.0523 (17)0.076 (2)0.0087 (15)0.0087 (15)0.0069 (16)
C170.0565 (18)0.093 (3)0.104 (3)0.0198 (18)0.0101 (18)0.004 (2)
C180.0521 (16)0.091 (2)0.085 (2)0.0079 (16)0.0267 (16)0.0201 (19)
F10.0896 (13)0.1078 (17)0.154 (2)0.0112 (12)0.0592 (14)0.0556 (15)
N10.0359 (12)0.0658 (15)0.0665 (15)0.0010 (12)0.0146 (11)0.0177 (13)
O10.0589 (11)0.0540 (12)0.0889 (15)0.0014 (10)0.0272 (11)0.0181 (11)
O20.0439 (10)0.0583 (12)0.0718 (13)0.0047 (9)0.0177 (9)0.0084 (10)
O30.0399 (10)0.0733 (13)0.0714 (13)0.0012 (9)0.0177 (9)0.0061 (11)
Geometric parameters (Å, º) top
C1—C61.368 (4)C11—C121.385 (3)
C1—C21.377 (3)C11—H110.9300
C1—N11.408 (3)C12—H120.9300
C2—C31.375 (4)C13—C141.347 (3)
C2—H20.9300C13—N11.359 (3)
C3—C41.355 (4)C13—H130.9300
C3—H30.9300C14—C151.463 (3)
C4—C51.362 (4)C15—O11.208 (3)
C4—F11.363 (3)C15—O21.346 (3)
C5—C61.375 (4)C16—O21.444 (3)
C5—H50.9300C16—C171.499 (4)
C6—H60.9300C16—H16A0.9700
C7—C121.384 (3)C16—H16B0.9700
C7—C81.392 (3)C17—H17A0.9600
C7—C141.486 (3)C17—H17B0.9600
C8—C91.379 (3)C17—H17C0.9600
C8—H80.9300C18—O31.425 (3)
C9—C101.378 (4)C18—H18A0.9600
C9—H90.9300C18—H18B0.9600
C10—O31.372 (3)C18—H18C0.9600
C10—C111.381 (3)N1—H10.83 (2)
C6—C1—C2118.7 (2)C7—C12—H12118.9
C6—C1—N1119.1 (2)C11—C12—H12118.9
C2—C1—N1122.2 (2)C14—C13—N1125.6 (2)
C3—C2—C1120.5 (3)C14—C13—H13117.2
C3—C2—H2119.8N1—C13—H13117.2
C1—C2—H2119.8C13—C14—C15119.6 (2)
C4—C3—C2119.2 (2)C13—C14—C7122.8 (2)
C4—C3—H3120.4C15—C14—C7117.6 (2)
C2—C3—H3120.4O1—C15—O2121.7 (2)
C3—C4—C5121.9 (3)O1—C15—C14124.2 (2)
C3—C4—F1118.8 (3)O2—C15—C14114.2 (2)
C5—C4—F1119.3 (3)O2—C16—C17107.4 (2)
C4—C5—C6118.3 (3)O2—C16—H16A110.2
C4—C5—H5120.8C17—C16—H16A110.2
C6—C5—H5120.8O2—C16—H16B110.2
C1—C6—C5121.4 (2)C17—C16—H16B110.2
C1—C6—H6119.3H16A—C16—H16B108.5
C5—C6—H6119.3C16—C17—H17A109.5
C12—C7—C8117.2 (2)C16—C17—H17B109.5
C12—C7—C14121.8 (2)H17A—C17—H17B109.5
C8—C7—C14120.9 (2)C16—C17—H17C109.5
C9—C8—C7121.1 (2)H17A—C17—H17C109.5
C9—C8—H8119.4H17B—C17—H17C109.5
C7—C8—H8119.4O3—C18—H18A109.5
C10—C9—C8120.5 (2)O3—C18—H18B109.5
C10—C9—H9119.7H18A—C18—H18B109.5
C8—C9—H9119.7O3—C18—H18C109.5
O3—C10—C9115.8 (2)H18A—C18—H18C109.5
O3—C10—C11124.6 (2)H18B—C18—H18C109.5
C9—C10—C11119.6 (2)C13—N1—C1126.5 (2)
C10—C11—C12119.2 (2)C13—N1—H1117.1 (19)
C10—C11—H11120.4C1—N1—H1116.3 (19)
C12—C11—H11120.4C15—O2—C16115.8 (2)
C7—C12—C11122.3 (2)C10—O3—C18118.0 (2)
C6—C1—C2—C30.9 (4)C10—C11—C12—C70.5 (4)
N1—C1—C2—C3178.1 (3)N1—C13—C14—C15177.8 (2)
C1—C2—C3—C40.1 (5)N1—C13—C14—C72.3 (4)
C2—C3—C4—C51.3 (5)C12—C7—C14—C1362.1 (3)
C2—C3—C4—F1179.9 (3)C8—C7—C14—C13119.3 (3)
C3—C4—C5—C61.4 (5)C12—C7—C14—C15117.8 (3)
F1—C4—C5—C6179.8 (3)C8—C7—C14—C1560.8 (3)
C2—C1—C6—C50.8 (4)C13—C14—C15—O1179.5 (2)
N1—C1—C6—C5178.2 (3)C7—C14—C15—O10.4 (4)
C4—C5—C6—C10.3 (5)C13—C14—C15—O20.3 (3)
C12—C7—C8—C91.2 (4)C7—C14—C15—O2179.6 (2)
C14—C7—C8—C9179.8 (2)C14—C13—N1—C1172.4 (2)
C7—C8—C9—C100.1 (4)C6—C1—N1—C13176.2 (3)
C8—C9—C10—O3179.7 (2)C2—C1—N1—C134.8 (4)
C8—C9—C10—C110.7 (4)O1—C15—O2—C162.4 (3)
O3—C10—C11—C12179.9 (2)C14—C15—O2—C16176.8 (2)
C9—C10—C11—C120.5 (4)C17—C16—O2—C15169.0 (2)
C8—C7—C12—C111.3 (4)C9—C10—O3—C18174.3 (2)
C14—C7—C12—C11180.0 (2)C11—C10—O3—C185.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.493.401 (3)167
N1—H1···O3ii0.83 (2)2.56 (3)3.229 (3)138 (2)
C16—H16B···Cg1iii0.972.993.788 (3)141
C18—H18A···Cg2iv0.962.803.626 (3)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18FNO3
Mr315.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)19.000 (4), 6.0400 (12), 15.081 (3)
β (°) 109.64 (3)
V3)1630.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3073, 2943, 1807
Rint0.026
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.162, 1.02
No. of reflections2943
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXP97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.493.401 (3)166.6
N1—H1···O3ii0.83 (2)2.56 (3)3.229 (3)138 (2)
C16—H16B···Cg1iii0.972.993.788 (3)141
C18—H18A···Cg2iv0.962.803.626 (3)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

This research was financially supported by the Education Department of Jiangxi Province, P. R. China (grant No. 2007–402).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404–406.  Web of Science CSD CrossRef Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212–4219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXue, J.-Y., Xiao, Z.-P., Shi, L., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 957–962.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds