organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ammonio-1-phosphono­pentane-1-phospho­nic acid

aV.I. Vernadskii Institute of General and Inorganic Chemistry, Kyiv 03680, Ukraine
*Correspondence e-mail: bon@ionc.kiev.ua

(Received 7 November 2008; accepted 20 November 2008; online 26 November 2008)

The title compound, C5H15NO6P2, was obtained by the reaction of penta­nenitrile with PCl3 followed by the dropwise addition of water. The asymmetric unit contains one mol­ecule, which exists as a zwitterion with a positive charge on the –NH3 group and a negative charge on one of the phospho­nic O atoms. The crystal structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a three-dimensional network.

Related literature

For the biological activity of organic disphospho­nic acids, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]); Szabo et al. (2002[Szabo, C. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]); Tromelin et al. (1986[Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301-312.]). For comparable bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H15NO6P2

  • Mr = 247.12

  • Monoclinic, P 21 /c

  • a = 14.5502 (3) Å

  • b = 7.1896 (1) Å

  • c = 9.4855 (2) Å

  • β = 96.938 (1)°

  • V = 985.01 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 (2) K

  • 0.38 × 0.36 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.961

  • 23409 measured reflections

  • 2471 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.06

  • 2471 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.84 (2) 2.02 (2) 2.7584 (16) 146.7 (19)
N1—H2N⋯O5ii 0.91 (2) 1.88 (2) 2.7799 (16) 169.4 (19)
N1—H3N⋯O2iii 0.88 (2) 1.99 (2) 2.8451 (16) 162.9 (18)
O1—H1O⋯O2iii 0.79 (2) 1.85 (3) 2.6297 (15) 167 (3)
O3—H3O⋯O5iii 0.79 (3) 1.70 (3) 2.4884 (15) 175 (3)
O6—H6O⋯O4iv 0.83 (3) 1.72 (3) 2.5372 (14) 168 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and have been tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002).

The asymmetric unit of the title compound contains one molecule, which exists as a zwitterion with positive and negative charges on the NH3 group and one of the phosphonic oxygen atoms, respectively. The phosphorus atoms display slightly distorted tetrahedral geometries, each provided by three oxygen atoms and one carbon atom. Bond lengths and angles have normal values (Allen et al., 1987).

There are no solvent water molecules in the asymmetric unit, which is unusual for α-aminodiphosphonic acids. This fact can be explained by the presence of the hydrophobic alkyl group. The structure is stabilized by a three-dimensional O—H···O and N—H···O hydrogen bonding network (Fig. 1, Table 1).

Related literature top

For the biological activity of organic disphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005); Szabo et al. (2002); Tromelin et al. (1986). For comparable bond lengths, see: Allen et al. (1987);

Experimental top

Dry hydrogen chloride at about 278 K was brought into contact with the surface of a mixture of pentanenitrile (83.13 g, 1 mol) and PCl3 (87.4 ml, 1 mol). After an hour water (54 ml, 3 mol) was added to the mixture dropwise. After a day the solution was treated by an excess amount of water and then vacuum distilled. The obtained solution was treated by a mixture of acetone and diethyl ether, yielding colourless crystals of the title compound.

Refinement top

H atoms bonded to O and N atoms were located in a difference map. Other H atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)] and C—H = 0.99 Å for CH2 [Uiso(H) = 1.2Ueq(C)]

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom-labelling scheme and 50% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound; projection along b axis. Dashed lines indicate hydrogen bonds.
1-Ammonio-1-phosphonopentane-1-phosphonic acid top
Crystal data top
C5H15NO6P2F(000) = 520
Mr = 247.12Dx = 1.666 Mg m3
Monoclinic, P21/cMelting point: 562 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.5502 (3) ÅCell parameters from 8806 reflections
b = 7.1896 (1) Åθ = 2.8–28.4°
c = 9.4855 (2) ŵ = 0.45 mm1
β = 96.938 (1)°T = 100 K
V = 985.01 (3) Å3Plate, colourless
Z = 40.38 × 0.36 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2471 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.848, Tmax = 0.961k = 99
23409 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.8863P]
where P = (Fo2 + 2Fc2)/3
2471 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C5H15NO6P2V = 985.01 (3) Å3
Mr = 247.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5502 (3) ŵ = 0.45 mm1
b = 7.1896 (1) ÅT = 100 K
c = 9.4855 (2) Å0.38 × 0.36 × 0.09 mm
β = 96.938 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2225 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.961Rint = 0.043
23409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
2471 reflectionsΔρmin = 0.32 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.39648 (2)0.07886 (5)0.68586 (4)0.00647 (9)
P20.28775 (2)0.24846 (5)0.54892 (4)0.00680 (9)
C10.30732 (9)0.00397 (19)0.54146 (14)0.0067 (3)
C20.21901 (10)0.1205 (2)0.55184 (15)0.0100 (3)
H2A0.19140.07780.63660.012*
H2B0.23830.25140.56920.012*
C30.14290 (10)0.1183 (2)0.42611 (16)0.0139 (3)
H3A0.16980.14890.33800.017*
H3B0.11570.00790.41530.017*
C40.06761 (12)0.2576 (3)0.4478 (2)0.0239 (4)
H4A0.04850.23810.54340.029*
H4B0.09390.38440.44570.029*
C50.01700 (12)0.2475 (3)0.3401 (2)0.0238 (4)
H5A0.00050.27140.24520.036*
H5B0.06200.34110.36240.036*
H5C0.04470.12340.34240.036*
N10.34540 (9)0.04748 (18)0.40433 (12)0.0075 (2)
O10.20552 (7)0.29755 (15)0.43309 (11)0.0103 (2)
O20.26347 (7)0.29945 (15)0.69151 (10)0.0105 (2)
O30.37688 (7)0.33350 (15)0.50568 (11)0.0102 (2)
O40.48097 (7)0.03933 (15)0.68442 (11)0.0106 (2)
O50.35286 (7)0.08211 (14)0.82242 (10)0.0092 (2)
O60.41170 (7)0.28091 (15)0.63361 (11)0.0103 (2)
H1N0.4006 (14)0.015 (3)0.406 (2)0.015 (5)*
H2N0.3439 (14)0.172 (3)0.387 (2)0.022 (5)*
H3N0.3141 (13)0.009 (3)0.331 (2)0.014 (5)*
H1O0.2192 (17)0.283 (4)0.356 (3)0.032 (6)*
H3O0.3713 (18)0.416 (4)0.450 (3)0.040 (7)*
H6O0.4518 (18)0.340 (4)0.684 (3)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00764 (16)0.00625 (17)0.00532 (16)0.00016 (12)0.00004 (12)0.00001 (12)
P20.00865 (17)0.00661 (17)0.00509 (16)0.00071 (12)0.00064 (12)0.00014 (12)
C10.0075 (6)0.0081 (6)0.0045 (6)0.0003 (5)0.0007 (5)0.0000 (5)
C20.0085 (6)0.0107 (7)0.0107 (6)0.0022 (5)0.0010 (5)0.0017 (5)
C30.0119 (7)0.0176 (8)0.0114 (7)0.0050 (6)0.0014 (5)0.0005 (6)
C40.0146 (8)0.0292 (10)0.0264 (9)0.0094 (7)0.0043 (7)0.0081 (7)
C50.0140 (7)0.0316 (10)0.0249 (9)0.0078 (7)0.0024 (6)0.0026 (7)
N10.0082 (6)0.0087 (6)0.0058 (5)0.0007 (4)0.0011 (4)0.0002 (4)
O10.0113 (5)0.0123 (5)0.0070 (5)0.0025 (4)0.0002 (4)0.0008 (4)
O20.0142 (5)0.0105 (5)0.0068 (4)0.0006 (4)0.0018 (4)0.0006 (4)
O30.0116 (5)0.0083 (5)0.0109 (5)0.0009 (4)0.0022 (4)0.0026 (4)
O40.0095 (5)0.0122 (5)0.0096 (5)0.0026 (4)0.0004 (4)0.0001 (4)
O50.0123 (5)0.0087 (5)0.0067 (4)0.0001 (4)0.0016 (4)0.0003 (4)
O60.0134 (5)0.0079 (5)0.0089 (5)0.0031 (4)0.0007 (4)0.0013 (4)
Geometric parameters (Å, º) top
P1—O41.4959 (10)C3—H3A0.9900
P1—O51.5099 (10)C3—H3B0.9900
P1—O61.5593 (11)C4—C51.504 (2)
P1—C11.8492 (14)C4—H4A0.9900
P2—O21.4846 (10)C4—H4B0.9900
P2—O31.5337 (11)C5—H5A0.9800
P2—O11.5639 (10)C5—H5B0.9800
P2—C11.8398 (14)C5—H5C0.9800
C1—N11.5070 (17)N1—H1N0.84 (2)
C1—C21.5471 (19)N1—H2N0.91 (2)
C2—C31.5264 (19)N1—H3N0.88 (2)
C2—H2A0.9900O1—H1O0.79 (2)
C2—H2B0.9900O3—H3O0.79 (3)
C3—C41.517 (2)O6—H6O0.83 (3)
O4—P1—O5116.59 (6)C2—C3—H3A109.5
O4—P1—O6112.20 (6)C4—C3—H3B109.5
O5—P1—O6110.42 (6)C2—C3—H3B109.5
O4—P1—C1109.37 (6)H3A—C3—H3B108.1
O5—P1—C1108.06 (6)C5—C4—C3114.90 (15)
O6—P1—C198.61 (6)C5—C4—H4A108.5
O2—P2—O3116.57 (6)C3—C4—H4A108.5
O2—P2—O1109.77 (6)C5—C4—H4B108.5
O3—P2—O1108.78 (6)C3—C4—H4B108.5
O2—P2—C1109.49 (6)H4A—C4—H4B107.5
O3—P2—C1104.08 (6)C4—C5—H5A109.5
O1—P2—C1107.72 (6)C4—C5—H5B109.5
N1—C1—C2109.71 (11)H5A—C5—H5B109.5
N1—C1—P2108.22 (9)C4—C5—H5C109.5
C2—C1—P2113.48 (10)H5A—C5—H5C109.5
N1—C1—P1106.30 (9)H5B—C5—H5C109.5
C2—C1—P1107.99 (9)C1—N1—H1N112.5 (13)
P2—C1—P1110.90 (7)C1—N1—H2N111.0 (13)
C3—C2—C1118.31 (12)H1N—N1—H2N106.4 (19)
C3—C2—H2A107.7C1—N1—H3N112.3 (12)
C1—C2—H2A107.7H1N—N1—H3N106.5 (18)
C3—C2—H2B107.7H2N—N1—H3N107.9 (18)
C1—C2—H2B107.7P2—O1—H1O111.4 (17)
H2A—C2—H2B107.1P2—O3—H3O117.1 (19)
C4—C3—C2110.76 (13)P1—O6—H6O114.5 (19)
C4—C3—H3A109.5
O2—P2—C1—N1171.72 (8)O4—P1—C1—C2176.54 (9)
O3—P2—C1—N146.42 (10)O5—P1—C1—C248.68 (11)
O1—P2—C1—N168.96 (10)O6—P1—C1—C266.19 (10)
O2—P2—C1—C266.27 (11)O4—P1—C1—P251.62 (9)
O3—P2—C1—C2168.44 (9)O5—P1—C1—P276.24 (8)
O1—P2—C1—C253.05 (11)O6—P1—C1—P2168.90 (7)
O2—P2—C1—P155.49 (9)N1—C1—C2—C350.75 (17)
O3—P2—C1—P169.81 (8)P2—C1—C2—C370.43 (15)
O1—P2—C1—P1174.81 (7)P1—C1—C2—C3166.21 (11)
O4—P1—C1—N165.79 (10)C1—C2—C3—C4173.11 (14)
O5—P1—C1—N1166.35 (9)C2—C3—C4—C5171.76 (15)
O6—P1—C1—N151.49 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.84 (2)2.02 (2)2.7584 (16)146.7 (19)
N1—H2N···O5ii0.91 (2)1.88 (2)2.7799 (16)169.4 (19)
N1—H3N···O2iii0.88 (2)1.99 (2)2.8451 (16)162.9 (18)
O1—H1O···O2iii0.79 (2)1.85 (3)2.6297 (15)167 (3)
O3—H3O···O5iii0.79 (3)1.70 (3)2.4884 (15)175 (3)
O6—H6O···O4iv0.83 (3)1.72 (3)2.5372 (14)168 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H15NO6P2
Mr247.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.5502 (3), 7.1896 (1), 9.4855 (2)
β (°) 96.938 (1)
V3)985.01 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.38 × 0.36 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.848, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
23409, 2471, 2225
Rint0.043
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.06
No. of reflections2471
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.84 (2)2.02 (2)2.7584 (16)146.7 (19)
N1—H2N···O5ii0.91 (2)1.88 (2)2.7799 (16)169.4 (19)
N1—H3N···O2iii0.88 (2)1.99 (2)2.8451 (16)162.9 (18)
O1—H1O···O2iii0.79 (2)1.85 (3)2.6297 (15)167 (3)
O3—H3O···O5iii0.79 (3)1.70 (3)2.4884 (15)175 (3)
O6—H6O···O4iv0.83 (3)1.72 (3)2.5372 (14)168 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x+1, y+1/2, z+3/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzabo, C. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds