organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(1,1,3,3-tetra­methyl­butyl)thio­phene

aAlbemarle Process Development Center, Albemarle Corporation, PO Box 341, Baton Rouge, LA 70821, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 21 August 2008; accepted 11 November 2008; online 20 November 2008)

There are two independent mol­ecules in the asymmetric unit of the title compound, C20H36S. Crystals are non-merohedrally twinned by twofold rotation about [001]. The bulky octyl groups of each mol­ecule are on the same side of the thio­phene plane and are approximately parallel. S—C distances are in the range 1.729 (4)–1.745 (3) Å, and the C—S—C angles are 92.98 (18) and 93.08 (17)°. The CH2 groups of the octyl groups are involved in weak C—H⋯S intra­molecular inter­actions.

Related literature

For previous synthetic work, see: Kutz & Corson (1946[Kutz, W. M. & Corson, B. B. (1946). J. Am. Chem. Soc. 68, 1477-1479.]); Caeser (1948[Caeser, P. D. (1948). J. Am. Chem. Soc. 70, 3623-3625.]). For the catalyst system, see: Elnagar et al. (2006[Elnagar, H. Y., Gatto, V. J., Lo, J., Boone, J. E., Coury, J. E. & Sakahara, B. (2006). US Patent 2006/0 276 677 A1.]). For a related structure, see: Krebs et al. (1992[Krebs, A. W., Franken, E., Müller, M., Colberg, H., Cholcha, W., Wilken, J., Ohrenberg, J., Albrecht, R. & Weiss, E. (1992). Tetrahedron Lett. 33, 5947-5950.]). For a description of the Cambridge Strucural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H36S

  • Mr = 308.55

  • Monoclinic, P c

  • a = 21.2367 (6) Å

  • b = 7.9954 (2) Å

  • c = 11.7987 (3) Å

  • β = 105.059 (2)°

  • V = 1934.57 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.40 mm−1

  • T = 90.0 (5) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.766, Tmax = 0.872

  • 9297 measured reflections

  • 9297 independent reflections

  • 9129 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.182

  • S = 1.08

  • 9297 reflections

  • 403 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: 2248/609 Friedel pairs corresponding to each component of the non-merohedral twin.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯S1 0.99 2.82 3.301 (4) 111
C16—H16A⋯S1 0.99 2.78 3.243 (4) 109
C28—H28A⋯S2 0.99 2.72 3.209 (4) 111
C36—H36A⋯S2 0.99 2.86 3.312 (4) 108

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and ROTAX (Cooper et al., 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CrystMol (Duchamp, 2005[Duchamp, D. J. (2005). CrystMol. D&A Consulting, L.C.C. URL: http://www.crystmol.com/home.html.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Kutz & Corson (1946) first reported acid catalyzed alkylation of thiophene with olefins and alcohols. They suggested that the mono-alkylation reaction occurred at the 2-position of the thiophene ring. Higher boiling liquid products were also isolated, which they believed to be di-alkylated thiophenes. Caeser (1948) synthesized 2,5-di-(1,1,3,3-tetramethylbutyl)thiophene by reacting diisobutylene with thiophene and isolated it as a low-melting solid (b.p. 146–147°C, m.p. 36–37°C). He correctly proposed the structure from its physical properties as well as from the work by Kutz & Corson (1946) on the mono-alkyl derivatives.

The two independent molecules of the asymmetric unit are shown in Fig. 1. Their conformations are quite similar, having both octyl chains on the same side of the thiophene plane. A least-squares fit, overlaying the thiophene and three central C atoms of the octyl groups yields an average deviation (11 atoms) of 0.182 Å, as shown in Fig. 2 (Duchamp, 2005). The thiophene rings in both molecules exhibit maximum deviation 0.011 (4) Å from planarity; it is pertinent for C2 in one molecule and C23 in the other. Some geometric features of the thiophene rings are given in Abstract. The molecules deviate slightly from mirror symmetry, as described by the S—C—C—C torsion angles about the bonds attaching the octyl groups to the thiophenes. Torsion angle magnitudes are about 12° larger on one side of the molecule than on the other: S1—C1—C5—C8 = -59.2 (4) and S2—C24—C33—C36 = -57.1 (4)° vs. S1—C4—C13—C16 = 47.8 (4) and S2—C21—C25—C28 = 44.7 (4)°.

No otherwise unsubstituted thiophenes having tertiary C atoms adjacent to both S atoms are present in the Cambridge Structural Database (Version 5.29 of November 2007; Allen, 2002) except for several macrocyclic molecules: AMADIB, FOJPOK, FOJPUK, FOJQAX, FOJQEB, LOHVEJ, XEMDOJ, XEMFAX, and YOZHEA. The structure of tetra-t-butylthiophene has been reported (Krebs et al., 1992). It has its thiophene twisted out of planarity as a result of the four bulky substituents.

Weak intramolecular C—H···S interactions involving the CH2 groups of the octyl substituents and the thiophene S atoms are listed in Tab. 1. The C—H···S angles are quite small for this type of interaction, near the tetrahedral angle.

Related literature top

For previous synthetic work, see: Kutz & Corson (1946); Caeser (1948). For the catalyst system, see: Elnagar et al. (2006). For a related structure, see: Krebs et al. (1992). For a description of the Cambridge Strucural Database, see: (Allen (2002).

Experimental top

Thiophene (42.4 g, 0.50 mol) and diisobutylene (60.8 g, 0.54 mol) were mixed at 20°C, and then the catalyst system containing triethylaluminum (30 ml, 1.0 M solution in heptane, 0.03 mol)/hydrogen chloride (120 ml, 1.0 M solution in ether, 0.12 mol) was carefully added to control the exothermic reaction, under a nitrogen atmosphere (Elnagar et al., 2006). The resulting reaction mixture was heated for 1 h at 80° C. After workup with 12% NaOH solution, the crude product (67.2 g, 87% yield based on diisobutylene) was obtained as a liquid. It solidified upon standing at room temperature. The solidified material was recrystallized from 20% aqueous 2-propanol to obtain colorless plate-like crystals with a melting point range of 36.9–38.1° C. 1H NMR (CDCl3) δ 6.57 (s, 2 H), 1.72 (s, 4 H), 1.42 (s, 12 H), 0.86 (s, 18 H); 13C NMR (CDCl3) δ 154.4, 121.3, 58.3, 38.7, 33.1, 32.8, 31.8.

Refinement top

Though all the H atoms were observable in the difference electron density map, they were situated into the idealized positions. The C—H distances were 0.95 for thiophene C, 0.98 for methyl and 0.99 Å for CH2, and thereafter treated as riding. Uiso for H was assigned as 1.2 × Ueq of the carrier atoms except for the methyls (1.5). The crystal was a non-merohedral twin with a twinning operation being rotation by 180° about [0 0 1]. The twin law was (-1 0 -0.935, 0 -1 0, 0 0 1), determined by ROTAX (Cooper et al., 2002). (-0.935 ~2a(cosβ)/c.) The number of the reflections in the first and the second domain of the non-merohedral components was 9704 and 2651 respectively. Four domain states were taken into account: two for the non-merohedral components while each moreover had an inversion counterpart. Refinement yielded component proportions 0.80 (2): 0.16 (2) and both inversion-related components 0.02 (2). 2248/609 Friedel pairs were present in the data set for the major/minor component. The largest residual peak was located 1.55 Å from as H20A.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006) and ROTAX (Cooper et al., 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CrystMol (Duchamp, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecules. The displacement ellipsoids shown at the 50% probability level. The H atoms are shown with arbitrary radius.
[Figure 2] Fig. 2. Overlay of two independent molecules of the title structure (Duchamp, 2005). The H atoms are not shown.
2,5-bis(1,1,3,3-tetramethylbutyl)thiophene top
Crystal data top
C20H36SF(000) = 688
Mr = 308.55Dx = 1.059 Mg m3
Monoclinic, PcMelting point = 309.9–311.1 K
Hall symbol: P -2ycCu Kα radiation, λ = 1.54178 Å
a = 21.2367 (6) ÅCell parameters from 5236 reflections
b = 7.9954 (2) Åθ = 5.5–67.5°
c = 11.7987 (3) ŵ = 1.40 mm1
β = 105.059 (2)°T = 90 K
V = 1934.57 (9) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII
diffractometer
9297 independent reflections
Radiation source: fine-focus sealed tube9129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 68.0°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2525
Tmin = 0.766, Tmax = 0.872k = 99
9297 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0988P)2 + 3.4793P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
9297 reflectionsΔρmax = 1.11 e Å3
403 parametersΔρmin = 0.42 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
268 constraintsExtinction coefficient: 0.0051 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: 2248/609 Friedel pairs corresponding to each component of the non-merohedral twin.
Crystal data top
C20H36SV = 1934.57 (9) Å3
Mr = 308.55Z = 4
Monoclinic, PcCu Kα radiation
a = 21.2367 (6) ŵ = 1.40 mm1
b = 7.9954 (2) ÅT = 90 K
c = 11.7987 (3) Å0.20 × 0.15 × 0.10 mm
β = 105.059 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
9297 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
9129 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.872Rint = 0.029
9297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0702 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.08Δρmax = 1.11 e Å3
9297 reflectionsΔρmin = 0.42 e Å3
403 parametersAbsolute structure: 2248/609 Friedel pairs corresponding to each component of the non-merohedral twin.
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74529 (4)0.37096 (11)0.09540 (6)0.0175 (2)
S20.17907 (4)1.10233 (10)0.07647 (7)0.0163 (2)
C10.68069 (18)0.2661 (4)0.1298 (3)0.0186 (8)
C20.69312 (17)0.2494 (5)0.2480 (3)0.0174 (7)
H20.66450.19270.28500.021*
C30.75267 (17)0.3243 (5)0.3119 (3)0.0175 (7)
H30.76700.32490.39520.021*
C40.78701 (18)0.3949 (4)0.2414 (3)0.0168 (8)
C50.62285 (19)0.2072 (5)0.0327 (4)0.0216 (8)
C60.6476 (2)0.0883 (5)0.0492 (4)0.0264 (9)
H6A0.67530.00190.00240.040*
H6B0.67280.15200.09310.040*
H6C0.61030.03550.10430.040*
C70.5769 (2)0.1051 (5)0.0870 (4)0.0255 (9)
H7A0.60010.00740.12750.038*
H7B0.53920.06810.02500.038*
H7C0.56200.17480.14330.038*
C80.58894 (19)0.3537 (5)0.0433 (3)0.0223 (8)
H8A0.56050.30350.11530.027*
H8B0.62350.41530.06820.027*
C90.54724 (18)0.4873 (5)0.0015 (3)0.0207 (8)
C100.5396 (2)0.6352 (6)0.0882 (4)0.0327 (10)
H10A0.58260.68200.08540.049*
H10B0.51220.72160.06640.049*
H10C0.51910.59570.16790.049*
C110.4790 (2)0.4239 (6)0.0066 (4)0.0331 (10)
H11A0.45870.38120.08550.050*
H11B0.45270.51570.01160.050*
H11C0.48170.33380.05080.050*
C120.5790 (2)0.5537 (5)0.1222 (4)0.0246 (9)
H12A0.62250.59730.12510.037*
H12B0.58270.46260.17920.037*
H12C0.55200.64340.14140.037*
C130.85485 (16)0.4777 (4)0.2767 (3)0.0157 (7)
C140.90328 (19)0.3590 (5)0.2417 (4)0.0194 (8)
H14A0.89170.34660.15620.029*
H14B0.90170.24950.27820.029*
H14C0.94740.40510.26850.029*
C150.87649 (19)0.4946 (5)0.4099 (3)0.0209 (8)
H15A0.84390.55900.43700.031*
H15B0.91860.55250.43260.031*
H15C0.88090.38320.44570.031*
C160.85696 (18)0.6429 (5)0.2102 (3)0.0183 (8)
H16A0.84090.61640.12560.022*
H16B0.90360.67240.22380.022*
C170.82107 (18)0.8068 (5)0.2308 (3)0.0183 (7)
C180.8267 (2)0.9278 (5)0.1335 (4)0.0235 (8)
H18A0.87270.94400.13600.035*
H18B0.80721.03550.14520.035*
H18C0.80360.88140.05710.035*
C190.8539 (2)0.8900 (5)0.3479 (4)0.0306 (10)
H19A0.84200.82990.41170.046*
H19B0.83931.00650.34680.046*
H19C0.90130.88710.36020.046*
C200.74868 (19)0.7770 (5)0.2225 (4)0.0251 (9)
H20A0.74450.70360.28670.038*
H20B0.72790.72400.14720.038*
H20C0.72740.88420.22830.038*
C210.13402 (18)1.0878 (4)0.1789 (3)0.0151 (7)
C220.16804 (18)1.1608 (5)0.2811 (3)0.0197 (8)
H220.15221.16430.34920.024*
C230.22905 (18)1.2314 (5)0.2779 (3)0.0192 (8)
H230.25691.28920.34190.023*
C240.24308 (17)1.2070 (4)0.1732 (3)0.0158 (7)
C250.06682 (16)1.0086 (4)0.1492 (3)0.0126 (7)
C260.01955 (18)1.1315 (5)0.0677 (3)0.0193 (8)
H26A0.02471.08560.04860.029*
H26B0.03321.14750.00480.029*
H26C0.02021.23930.10760.029*
C270.04334 (18)0.9911 (5)0.2620 (3)0.0213 (8)
H27A0.00190.93010.24420.032*
H27B0.03721.10250.29210.032*
H27C0.07600.92970.32130.032*
C280.06434 (18)0.8429 (5)0.0803 (3)0.0168 (7)
H28A0.08420.86680.01480.020*
H28B0.01770.81940.04420.020*
C290.09494 (18)0.6761 (4)0.1364 (3)0.0171 (7)
C300.1644 (2)0.6973 (6)0.2128 (5)0.0354 (11)
H30A0.16350.75830.28440.053*
H30B0.19010.76020.16930.053*
H30C0.18410.58700.23370.053*
C310.0965 (2)0.5597 (5)0.0348 (4)0.0248 (9)
H31A0.05250.54920.01730.037*
H31B0.11230.44930.06560.037*
H31C0.12580.60590.00920.037*
C320.0529 (2)0.5926 (5)0.2079 (4)0.0289 (9)
H32A0.05210.66310.27550.043*
H32B0.07130.48300.23550.043*
H32C0.00840.57840.15860.043*
C330.30216 (19)1.2630 (5)0.1341 (3)0.0195 (8)
C340.2808 (2)1.3824 (6)0.0277 (4)0.0288 (9)
H34A0.31941.42360.00560.043*
H34B0.25681.47710.04870.043*
H34C0.25261.32190.03860.043*
C350.3491 (2)1.3595 (5)0.2330 (4)0.0247 (9)
H35A0.38861.38810.20890.037*
H35B0.36081.28980.30370.037*
H35C0.32801.46220.24970.037*
C360.33644 (19)1.1113 (5)0.0874 (3)0.0215 (8)
H36A0.30251.05700.02460.026*
H36B0.36831.16060.04900.026*
C370.37233 (18)0.9698 (5)0.1674 (3)0.0210 (8)
C380.3867 (3)0.8360 (7)0.0861 (5)0.0519 (14)
H38A0.40850.88690.03100.078*
H38B0.34570.78450.04220.078*
H38C0.41500.75030.13260.078*
C390.3342 (2)0.8904 (6)0.2456 (5)0.0410 (12)
H39A0.32140.97690.29420.062*
H39B0.36150.80680.29630.062*
H39C0.29510.83630.19690.062*
C400.4392 (2)1.0251 (6)0.2493 (5)0.0393 (11)
H40A0.43191.08480.31730.059*
H40B0.46151.09900.20600.059*
H40C0.46620.92620.27610.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0180 (5)0.0209 (4)0.0138 (4)0.0024 (4)0.0045 (3)0.0004 (3)
S20.0143 (4)0.0216 (4)0.0125 (4)0.0029 (4)0.0026 (3)0.0002 (3)
C10.0183 (19)0.0130 (18)0.0264 (19)0.0028 (14)0.0090 (15)0.0038 (15)
C20.0122 (17)0.024 (2)0.0171 (17)0.0004 (14)0.0055 (13)0.0010 (14)
C30.0132 (17)0.025 (2)0.0141 (17)0.0015 (15)0.0026 (14)0.0018 (14)
C40.0184 (19)0.0170 (19)0.0163 (18)0.0050 (14)0.0068 (15)0.0008 (13)
C50.0170 (19)0.026 (2)0.024 (2)0.0046 (16)0.0100 (16)0.0015 (16)
C60.027 (2)0.027 (2)0.024 (2)0.0017 (17)0.0055 (17)0.0046 (16)
C70.018 (2)0.027 (2)0.031 (2)0.0057 (16)0.0060 (17)0.0036 (16)
C80.0159 (19)0.033 (2)0.0153 (19)0.0036 (16)0.0000 (15)0.0009 (15)
C90.0164 (19)0.026 (2)0.0194 (19)0.0024 (16)0.0041 (15)0.0017 (15)
C100.034 (2)0.031 (2)0.034 (2)0.0077 (18)0.0114 (19)0.0005 (18)
C110.023 (2)0.040 (3)0.034 (2)0.0006 (18)0.0042 (18)0.0068 (19)
C120.023 (2)0.023 (2)0.028 (2)0.0003 (16)0.0076 (16)0.0059 (16)
C130.0097 (17)0.0151 (18)0.0193 (18)0.0008 (13)0.0018 (13)0.0009 (14)
C140.0189 (19)0.0124 (18)0.028 (2)0.0020 (14)0.0073 (16)0.0022 (14)
C150.019 (2)0.020 (2)0.023 (2)0.0028 (15)0.0052 (15)0.0050 (15)
C160.0153 (18)0.028 (2)0.0118 (17)0.0026 (15)0.0041 (14)0.0023 (14)
C170.0168 (18)0.0195 (19)0.0182 (18)0.0014 (15)0.0041 (14)0.0000 (14)
C180.029 (2)0.0169 (19)0.026 (2)0.0016 (16)0.0086 (17)0.0004 (16)
C190.044 (3)0.021 (2)0.025 (2)0.0002 (18)0.0053 (19)0.0029 (16)
C200.021 (2)0.0202 (19)0.036 (2)0.0065 (16)0.0125 (18)0.0009 (16)
C210.0177 (18)0.0157 (18)0.0120 (17)0.0032 (14)0.0040 (14)0.0024 (13)
C220.0188 (19)0.0198 (19)0.0175 (18)0.0089 (15)0.0005 (14)0.0005 (14)
C230.0204 (19)0.0164 (19)0.0199 (18)0.0001 (14)0.0040 (15)0.0009 (14)
C240.0138 (17)0.0168 (18)0.0153 (17)0.0008 (14)0.0010 (14)0.0026 (13)
C250.0083 (16)0.0186 (18)0.0094 (15)0.0010 (13)0.0006 (12)0.0017 (13)
C260.0171 (19)0.0188 (19)0.0192 (18)0.0027 (15)0.0002 (15)0.0051 (14)
C270.0141 (19)0.034 (2)0.0176 (18)0.0007 (16)0.0076 (15)0.0002 (16)
C280.0149 (18)0.0193 (19)0.0151 (17)0.0015 (14)0.0018 (14)0.0012 (14)
C290.0167 (18)0.0135 (18)0.0203 (18)0.0030 (14)0.0036 (14)0.0049 (14)
C300.026 (2)0.023 (2)0.048 (3)0.0025 (17)0.0079 (19)0.0043 (19)
C310.030 (2)0.019 (2)0.027 (2)0.0021 (17)0.0121 (18)0.0012 (16)
C320.040 (3)0.024 (2)0.030 (2)0.0017 (18)0.0218 (19)0.0046 (17)
C330.0166 (19)0.026 (2)0.0138 (18)0.0021 (15)0.0003 (14)0.0020 (15)
C340.021 (2)0.031 (2)0.034 (2)0.0057 (16)0.0051 (17)0.0137 (18)
C350.019 (2)0.026 (2)0.031 (2)0.0070 (16)0.0078 (16)0.0029 (16)
C360.0164 (19)0.033 (2)0.0201 (19)0.0083 (16)0.0144 (15)0.0031 (16)
C370.0117 (18)0.028 (2)0.0233 (19)0.0023 (15)0.0046 (15)0.0083 (16)
C380.060 (4)0.054 (3)0.039 (3)0.017 (3)0.008 (3)0.020 (3)
C390.024 (2)0.044 (3)0.061 (3)0.009 (2)0.022 (2)0.029 (2)
C400.021 (2)0.042 (3)0.048 (3)0.009 (2)0.005 (2)0.003 (2)
Geometric parameters (Å, º) top
S1—C41.731 (4)C20—H20B0.9800
S1—C11.743 (4)C20—H20C0.9800
S2—C211.729 (4)C21—C221.365 (5)
S2—C241.745 (3)C21—C251.517 (5)
C1—C21.357 (5)C22—C231.423 (5)
C1—C51.520 (5)C22—H220.9500
C2—C31.425 (5)C23—C241.358 (5)
C2—H20.9500C23—H230.9500
C3—C41.363 (5)C24—C331.512 (5)
C3—H30.9500C25—C261.549 (5)
C4—C131.541 (5)C25—C271.544 (5)
C5—C71.534 (5)C25—C281.548 (5)
C5—C61.542 (5)C26—H26A0.9800
C5—C81.536 (6)C26—H26B0.9800
C6—H6A0.9800C26—H26C0.9800
C6—H6B0.9800C27—H27A0.9800
C6—H6C0.9800C27—H27B0.9800
C7—H7A0.9800C27—H27C0.9800
C7—H7B0.9800C28—C291.554 (5)
C7—H7C0.9800C28—H28A0.9900
C8—C91.548 (5)C28—H28B0.9900
C8—H8A0.9900C29—C311.525 (5)
C8—H8B0.9900C29—C301.525 (5)
C9—C111.522 (6)C29—C321.532 (5)
C9—C121.535 (5)C30—H30A0.9800
C9—C101.544 (6)C30—H30B0.9800
C10—H10A0.9800C30—H30C0.9800
C10—H10B0.9800C31—H31A0.9800
C10—H10C0.9800C31—H31B0.9800
C11—H11A0.9800C31—H31C0.9800
C11—H11B0.9800C32—H32A0.9800
C11—H11C0.9800C32—H32B0.9800
C12—H12A0.9800C32—H32C0.9800
C12—H12B0.9800C33—C351.532 (5)
C12—H12C0.9800C33—C341.548 (5)
C13—C151.525 (5)C33—C361.586 (5)
C13—C141.533 (5)C34—H34A0.9800
C13—C161.542 (5)C34—H34B0.9800
C14—H14A0.9800C34—H34C0.9800
C14—H14B0.9800C35—H35A0.9800
C14—H14C0.9800C35—H35B0.9800
C15—H15A0.9800C35—H35C0.9800
C15—H15B0.9800C36—C371.541 (6)
C15—H15C0.9800C36—H36A0.9900
C16—C171.567 (5)C36—H36B0.9900
C16—H16A0.9900C37—C391.516 (6)
C16—H16B0.9900C37—C381.519 (6)
C17—C191.529 (5)C37—C401.559 (6)
C17—C181.529 (5)C38—H38A0.9800
C17—C201.533 (5)C38—H38B0.9800
C18—H18A0.9800C38—H38C0.9800
C18—H18B0.9800C39—H39A0.9800
C18—H18C0.9800C39—H39B0.9800
C19—H19A0.9800C39—H39C0.9800
C19—H19B0.9800C40—H40A0.9800
C19—H19C0.9800C40—H40B0.9800
C20—H20A0.9800C40—H40C0.9800
C4—S1—C192.98 (18)H20B—C20—H20C109.5
C21—S2—C2493.08 (17)C22—C21—C25129.3 (3)
C2—C1—C5130.3 (3)C22—C21—S2109.1 (3)
C2—C1—S1109.4 (3)C25—C21—S2121.7 (3)
C5—C1—S1120.3 (3)C21—C22—C23115.0 (3)
C1—C2—C3114.3 (3)C21—C22—H22122.5
C1—C2—H2122.8C23—C22—H22122.5
C3—C2—H2122.8C24—C23—C22112.6 (3)
C4—C3—C2113.1 (3)C24—C23—H23123.7
C4—C3—H3123.4C22—C23—H23123.7
C2—C3—H3123.4C23—C24—C33129.1 (3)
C3—C4—C13128.6 (3)C23—C24—S2110.2 (3)
C3—C4—S1110.2 (3)C33—C24—S2120.7 (3)
C13—C4—S1121.1 (3)C21—C25—C26107.3 (3)
C1—C5—C7109.1 (3)C21—C25—C27109.5 (3)
C1—C5—C6108.9 (3)C26—C25—C27106.9 (3)
C7—C5—C6106.9 (3)C21—C25—C28112.3 (3)
C1—C5—C8111.6 (3)C26—C25—C28106.8 (3)
C7—C5—C8113.4 (3)C27—C25—C28113.7 (3)
C6—C5—C8106.7 (3)C25—C26—H26A109.5
C5—C6—H6A109.5C25—C26—H26B109.5
C5—C6—H6B109.5H26A—C26—H26B109.5
H6A—C6—H6B109.5C25—C26—H26C109.5
C5—C6—H6C109.5H26A—C26—H26C109.5
H6A—C6—H6C109.5H26B—C26—H26C109.5
H6B—C6—H6C109.5C25—C27—H27A109.5
C5—C7—H7A109.5C25—C27—H27B109.5
C5—C7—H7B109.5H27A—C27—H27B109.5
H7A—C7—H7B109.5C25—C27—H27C109.5
C5—C7—H7C109.5H27A—C27—H27C109.5
H7A—C7—H7C109.5H27B—C27—H27C109.5
H7B—C7—H7C109.5C25—C28—C29123.8 (3)
C5—C8—C9124.1 (3)C25—C28—H28A106.4
C5—C8—H8A106.3C29—C28—H28A106.4
C9—C8—H8A106.3C25—C28—H28B106.4
C5—C8—H8B106.3C29—C28—H28B106.4
C9—C8—H8B106.3H28A—C28—H28B106.4
H8A—C8—H8B106.4C31—C29—C30108.5 (3)
C11—C9—C12109.4 (3)C31—C29—C32107.6 (3)
C11—C9—C10107.1 (4)C30—C29—C32109.6 (3)
C12—C9—C10108.1 (3)C31—C29—C28106.3 (3)
C11—C9—C8112.0 (3)C30—C29—C28112.9 (3)
C12—C9—C8113.3 (3)C32—C29—C28111.7 (3)
C10—C9—C8106.7 (3)C29—C30—H30A109.5
C9—C10—H10A109.5C29—C30—H30B109.5
C9—C10—H10B109.5H30A—C30—H30B109.5
H10A—C10—H10B109.5C29—C30—H30C109.5
C9—C10—H10C109.5H30A—C30—H30C109.5
H10A—C10—H10C109.5H30B—C30—H30C109.5
H10B—C10—H10C109.5C29—C31—H31A109.5
C9—C11—H11A109.5C29—C31—H31B109.5
C9—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C29—C31—H31C109.5
C9—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5C29—C32—H32A109.5
C9—C12—H12A109.5C29—C32—H32B109.5
C9—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12B109.5C29—C32—H32C109.5
C9—C12—H12C109.5H32A—C32—H32C109.5
H12A—C12—H12C109.5H32B—C32—H32C109.5
H12B—C12—H12C109.5C24—C33—C35110.1 (3)
C15—C13—C14106.8 (3)C24—C33—C34109.7 (3)
C15—C13—C4109.0 (3)C35—C33—C34107.7 (3)
C14—C13—C4107.9 (3)C24—C33—C36111.8 (3)
C15—C13—C16114.1 (3)C35—C33—C36112.5 (3)
C14—C13—C16106.4 (3)C34—C33—C36104.7 (3)
C4—C13—C16112.3 (3)C33—C34—H34A109.5
C13—C14—H14A109.5C33—C34—H34B109.5
C13—C14—H14B109.5H34A—C34—H34B109.5
H14A—C14—H14B109.5C33—C34—H34C109.5
C13—C14—H14C109.5H34A—C34—H34C109.5
H14A—C14—H14C109.5H34B—C34—H34C109.5
H14B—C14—H14C109.5C33—C35—H35A109.5
C13—C15—H15A109.5C33—C35—H35B109.5
C13—C15—H15B109.5H35A—C35—H35B109.5
H15A—C15—H15B109.5C33—C35—H35C109.5
C13—C15—H15C109.5H35A—C35—H35C109.5
H15A—C15—H15C109.5H35B—C35—H35C109.5
H15B—C15—H15C109.5C37—C36—C33123.2 (3)
C13—C16—C17123.9 (3)C37—C36—H36A106.5
C13—C16—H16A106.4C33—C36—H36A106.5
C17—C16—H16A106.4C37—C36—H36B106.5
C13—C16—H16B106.4C33—C36—H36B106.5
C17—C16—H16B106.4H36A—C36—H36B106.5
H16A—C16—H16B106.4C39—C37—C38108.4 (4)
C19—C17—C18107.3 (3)C39—C37—C36115.0 (3)
C19—C17—C20109.8 (3)C38—C37—C36106.2 (4)
C18—C17—C20108.8 (3)C39—C37—C40106.6 (4)
C19—C17—C16112.3 (3)C38—C37—C40106.9 (4)
C18—C17—C16106.1 (3)C36—C37—C40113.4 (3)
C20—C17—C16112.3 (3)C37—C38—H38A109.5
C17—C18—H18A109.5C37—C38—H38B109.5
C17—C18—H18B109.5H38A—C38—H38B109.5
H18A—C18—H18B109.5C37—C38—H38C109.5
C17—C18—H18C109.5H38A—C38—H38C109.5
H18A—C18—H18C109.5H38B—C38—H38C109.5
H18B—C18—H18C109.5C37—C39—H39A109.5
C17—C19—H19A109.5C37—C39—H39B109.5
C17—C19—H19B109.5H39A—C39—H39B109.5
H19A—C19—H19B109.5C37—C39—H39C109.5
C17—C19—H19C109.5H39A—C39—H39C109.5
H19A—C19—H19C109.5H39B—C39—H39C109.5
H19B—C19—H19C109.5C37—C40—H40A109.5
C17—C20—H20A109.5C37—C40—H40B109.5
C17—C20—H20B109.5H40A—C40—H40B109.5
H20A—C20—H20B109.5C37—C40—H40C109.5
C17—C20—H20C109.5H40A—C40—H40C109.5
H20A—C20—H20C109.5H40B—C40—H40C109.5
C4—S1—C1—C21.4 (3)C24—S2—C21—C220.1 (3)
C4—S1—C1—C5179.5 (3)C24—S2—C21—C25178.2 (3)
C5—C1—C2—C3179.0 (4)C25—C21—C22—C23176.8 (3)
S1—C1—C2—C32.0 (4)S2—C21—C22—C231.2 (4)
C1—C2—C3—C41.7 (5)C21—C22—C23—C242.2 (5)
C2—C3—C4—C13176.0 (3)C22—C23—C24—C33179.4 (4)
C2—C3—C4—S10.6 (4)C22—C23—C24—S22.0 (4)
C1—S1—C4—C30.4 (3)C21—S2—C24—C231.2 (3)
C1—S1—C4—C13177.3 (3)C21—S2—C24—C33178.8 (3)
C2—C1—C5—C74.3 (6)C22—C21—C25—C26105.5 (4)
S1—C1—C5—C7174.7 (3)S2—C21—C25—C2672.4 (3)
C2—C1—C5—C6120.7 (4)C22—C21—C25—C2710.2 (5)
S1—C1—C5—C658.3 (4)S2—C21—C25—C27172.0 (3)
C2—C1—C5—C8121.8 (4)C22—C21—C25—C28137.4 (4)
S1—C1—C5—C859.2 (4)S2—C21—C25—C2844.7 (4)
C1—C5—C8—C971.6 (4)C21—C25—C28—C2973.7 (4)
C7—C5—C8—C952.1 (5)C26—C25—C28—C29168.9 (3)
C6—C5—C8—C9169.6 (4)C27—C25—C28—C2951.4 (4)
C5—C8—C9—C1179.2 (5)C25—C28—C29—C31166.2 (3)
C5—C8—C9—C1245.1 (5)C25—C28—C29—C3047.3 (5)
C5—C8—C9—C10163.9 (4)C25—C28—C29—C3276.7 (4)
C3—C4—C13—C158.5 (5)C23—C24—C33—C350.1 (5)
S1—C4—C13—C15175.2 (3)S2—C24—C33—C35177.0 (3)
C3—C4—C13—C14107.1 (4)C23—C24—C33—C34118.5 (4)
S1—C4—C13—C1469.2 (4)S2—C24—C33—C3458.6 (4)
C3—C4—C13—C16135.9 (4)C23—C24—C33—C36125.7 (4)
S1—C4—C13—C1647.8 (4)S2—C24—C33—C3657.1 (4)
C15—C13—C16—C1755.2 (5)C24—C33—C36—C3768.1 (4)
C14—C13—C16—C17172.6 (3)C35—C33—C36—C3756.4 (5)
C4—C13—C16—C1769.6 (4)C34—C33—C36—C37173.1 (3)
C13—C16—C17—C1972.5 (5)C33—C36—C37—C3949.9 (5)
C13—C16—C17—C18170.7 (3)C33—C36—C37—C38169.8 (4)
C13—C16—C17—C2051.9 (5)C33—C36—C37—C4073.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···S10.992.823.301 (4)111
C16—H16A···S10.992.783.243 (4)109
C28—H28A···S20.992.723.209 (4)111
C36—H36A···S20.992.863.312 (4)108

Experimental details

Crystal data
Chemical formulaC20H36S
Mr308.55
Crystal system, space groupMonoclinic, Pc
Temperature (K)90
a, b, c (Å)21.2367 (6), 7.9954 (2), 11.7987 (3)
β (°) 105.059 (2)
V3)1934.57 (9)
Z4
Radiation typeCu Kα
µ (mm1)1.40
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.766, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
9297, 9297, 9129
Rint0.029
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.182, 1.08
No. of reflections9297
No. of parameters403
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.42
Absolute structure2248/609 Friedel pairs corresponding to each component of the non-merohedral twin.

Computer programs: , APEX2 (Bruker, 2006) and ROTAX (Cooper et al., 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CrystMol (Duchamp, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···S10.992.823.301 (4)111
C16—H16A···S10.992.783.243 (4)109
C28—H28A···S20.992.723.209 (4)111
C36—H36A···S20.992.863.312 (4)108
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaeser, P. D. (1948). J. Am. Chem. Soc. 70, 3623–3625.  PubMed Web of Science Google Scholar
First citationCooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuchamp, D. J. (2005). CrystMol. D&A Consulting, L.C.C. URL: http://www.crystmol.com/home.html.  Google Scholar
First citationElnagar, H. Y., Gatto, V. J., Lo, J., Boone, J. E., Coury, J. E. & Sakahara, B. (2006). US Patent 2006/0 276 677 A1.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrebs, A. W., Franken, E., Müller, M., Colberg, H., Cholcha, W., Wilken, J., Ohrenberg, J., Albrecht, R. & Weiss, E. (1992). Tetrahedron Lett. 33, 5947–5950.  CSD CrossRef CAS Web of Science Google Scholar
First citationKutz, W. M. & Corson, B. B. (1946). J. Am. Chem. Soc. 68, 1477–1479.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds