organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3-acetyl-3-(1,3-benzo­thia­zol-2-yl)penta­nedioate

aLaboratoire de Chimie Organique et Études Physicochimiques, ENS Rabat, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Université Mohammed V Rabat, Morocco, and cInstitute of Chemistry, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

(Received 19 September 2008; accepted 31 October 2008; online 8 November 2008)

The title compound, C16H17NO5S, was one of two condensation products from the reaction of 1-(1,3-benzothia­zol-2-yl)propan-2-one with methyl chloro­acetate. The non-H atoms in each of the four substituent groups on the central quaternary C atom are virtually coplanar. The maximum deviations from the least-squares planes are 0.015 (2) and 0.020 (2) Å for the methyl C atoms in the methyl acetate substituents and 0.033 (1) Å for the linked C atom of the benzothia­zole substituent. The S, C and N atoms in the thia­zole ring of the benzothia­zole substituent lie −0.037 (2), 0.046 (2) and −0.028 (2) Å, respectively, from the mean plane defined by the benzene ring atoms.

Related literature

For general background, see: Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]); Bénéteau et al., 1999[Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. J. (1999). Eur. J. Med. Chem. 34, 1053-1060.]; El-Sherbeny (2000[El-Sherbeny, M. A. (2000). Arzneim. Forsch. 50, 848-853.]); Abayeh et al. (1994[Abayeh, O. J., Olagbemiro, T. O., Agho, M. O. & Amupitan, J. O. (1994). Bull. Soc. Chim. Belg. 103, 687-690.]); Ivanov & Yuritsyn (1971[Ivanov, S. V. & Yuritsyn, V. S. (1971). Neftekhimiya, 11, 99-107.]); Monsanto (1968[Monsanto, C. O. (1968). Br. Patent No. 1 106 577.]); Lee et al. (2001[Lee, C. L., Lam, Y. & Lee, S.-Y. (2001). Tetrahedron Lett. 42, 109-111.]). For related structures, see: Chen (1994[Chen, W. (1994). J. Organomet. Chem. 471, 69-70.]); Chu et al. (2003[Chu, Q., Wang, Z., Huang, Q., Yan, C. & Zhu, S. (2003). New J. Chem. 27, 1522-1527.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO5S

  • Mr = 335.37

  • Monoclinic, P 21 /c

  • a = 14.4075 (3) Å

  • b = 8.8089 (2) Å

  • c = 13.8968 (3) Å

  • β = 118.011 (1)°

  • V = 1557.10 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 (2) K

  • 0.54 × 0.47 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.945

  • 94263 measured reflections

  • 3766 independent reflections

  • 3396 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.02

  • 3766 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzothiazole compounds show interesting biological and pharmacological properties (see, e.g., Palmer et al., 1971; Bénéteau et al., 1999; El-Sherbeny, 2000; Abayeh et al., 1994). Besides some few papers with industrial background (see, e.g., Ivanov & Yuritsyn, 1971; Monsanto, 1968) many papers discuss the synthesis, structure-property relationship and complexation behaviour of these compounds. An important group among the different derivatives of benzothiazole are those substituted at C2 (see, e.g., Lee et al., 2001).

In the following we describe the synthesis and structural characterization of such a kind of benzothiazole derivative. This compound, dimethyl 3-acetyl-3-(1,3-benzothiazol-2-yl)pentanedioate, 3, was synthesized according to reaction scheme 1 through alkylation of 1-(1,3-benzothiazol-2-yl)propan-2-one, 1, with methyl chloroacetate under classical condensation conditions, giving methyl 2-(2-(2-oxopropylidene)1,3-benzothiazol-3(2H)-yl)acetate, 2, as second reaction product. The starting material 1 was obtained by condensing 2-aminothiophenol with ethyl acetoacetate in xylene at 160° C for 1 h 30 min.

The structure of the title compound can be best described in relation to the central quaternary carbon atom [C1] surrounded by a benzothiazole moiety, two methyl acetate residues and an acetyl group (Fig. 1). The corresponding bond lengths at C1 of 1.537 (2) Å [C30], 1.538 (2) Å [C20], 1.561 (2) Å [C10] and 1.521 (2) Å are in good agreement with carbon-carbon single bonds, as well as are the angles of 110.9 (1)° - 108.5 (1)° in the range for a tetrahedral coordination. Within the benzothiazole rest bond lengths and angles are very similar to those in comparable compounds like the 2-methyl benzothiazole molecule (Chen, 1994; Chu et al., 2003), which was found as non complexing agent in some crystal structures. Especially the bond angle at the sulfur [88.99 (6)°] and nitrogen [110.5 (1)°] atoms as well as the lengths of the sulfur carbon bonds [1.734 (1)/1.755 (1) A] and the carbon nitrogen double bond between C2 and N3 [129.2 (2) A] are very similar. In relation to the benzenic part [C4 - C9] of the benzothiazole rest which is almost planar [maximal deviation from the least squares plain: -0.0031 (8) Å] the remaining atoms [S1, C2, N3] of the thiazole ring lie -0.037 (2), 0.046 (2) and -0.028 (2) Å above/below this point of reference. This conformation is somewhat different to the 2-methyl benzothiazole molecule where the corresponding values are -0.028 (1), -0.004 (5), 0.017 (4) Å (Chen, 1994) and -0.024 (1), -0.030 (3), -0.017 (3) Å (Chu et al., 2003), respectively, indicating a conformational flexibility of the thiazole moitie. Bond angles and lengths of the two methyl acetate rests as well as those of the acetyl moietie are in the expected ranges [f.e. d(C=O) = 1.201 (2) - 1.206 (2) Å, d(Ccarbonyl—Omethoxy) = 1.341 (2)/1.332 (2) Å, d(Cmethyl—O) = 1.450 (2)/1.450 (2) Å].

Intermolecular forces are restricted mainly to van der Waals ones. No π-π interactions as well as classical hydrogen bonds are found although there are two short intramolecular contacts between the oxygen atoms of two carbonyl groups and adjacent hydrogen atoms [d(O21 - H301) = 2.49 Å, d(O31—H202) = 2.54 Å] and one short intermolecular contact between the sulfur atom of the benzothiazole group and the hydrogen atom of a methylene group [d(Sn1—H301) = 2.86 Å] of a neigbhouring molecule.

Related literature top

For general background, see: Palmer et al. (1971); Bénéteau et al., 1999; El-Sherbeny (2000); Abayeh et al. (1994); Ivanov & Yuritsyn (1971); Monsanto (1968); Lee et al. (2001). For related structures, see: Chen (1994); Chu et al. (2003).

Experimental top

All solvents and reagents were used as received from Aldrich and Fluka. IR data were recorded using a Bruker VERTEX 70 FTIR spectrometer with ATR device. Wavelengths (ν) are reported in cm-1. 1H and 13C NMR were obtained at ambient temperature using a Bruker AVANCE 300 A spectrometer. Chemical shifts (δ) are reported in parts per million (p.p.m.) relative to internal standards. Mass spectra were carried out using a LCQ Advantage MAX spectrometer employing Electro Spray Ionization (ESI).

2.84 g (2.61 mmol) methyl chloroacetate were added in one portion to a stirred solution of 100 ml acetone containing 1 g (5.23 mmol) 1-(benzothiazol-2-yl)propan-2-one, 1, and 7.22 g (52.3 mmol) K2CO3. The reaction mixture was refluxed for 12 h, filtered off and the solvent evaporated. After cooling a pale white precipitate of 2 appeared. These crystals were collected by filtration and recrystallized from ethanol (yield 0.5 g, 36.5%). The filtrate was leaved overnight at room temperature. Thereafter a second crystalline product was obtained which on recrystallization from ethanol gave white single crystals of 3 (yield 0.8 g, 45.6%).

Methyl 2-(2-(2-oxopropylidene)1,3-benzothiazol-3(2H)-yl)acetate, 2: mp. 208–210° C; IR (ATR), ν[cm-1]): 1608; 1739; 1H-NMR (300 MHz; CDCl3), δ (p.p.m.): 3.78 (s, 2H), 5.75 (s,1H), 6.9–7.6 (m, 4H); 13C-NMR (75 MHZ; CDCl3), δ (p.p.m.): 29.3; 46,9, 53,1; 90.9; 109.5; 122.7; 123.3; 127.2; 139.4; 160.5; 167.2, 191.5.

Dimethyl 3-acetyl-3-(1,3-benzothiazol-2-yl)pentandioate, 3: mp: 166–168° C; IR (ATR), ν[cm-1): 1617; 1718; 1H-NMR (30 MHz; CDCl3), δ (p.p.m.): 2.24 (s, 3H), 3.54–371 (m, 10H) 7.4–8.0 (m, 4H);13C-NMR (75 MHz; CDCl3), δ (p.p.m.): 25.7; 38.9; 51.9, 57.5, 121.6, 123.4, 125.5, 126.2, 135.4, 152.4, 152.6 169.8, 171.0, 203.6; MS(ESI): m/z 336 [M+1]+, 639 [2M+23]+.

A suitable single-crystal of 3 was selected under a polarization microsope and mounted on a 50 µm MicroMesh MiTeGen MicromountTM using FROMBLIN Y perfluoropolyether (LVAC 16/6, Aldrich).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound with the atomic numbering scheme used. With exception of the hydrogen atoms, which are represented as spheres of arbitrary radius, all other atoms are shown as thermal displacement ellipsoids (oxygen = white, one octant; carbon = grey; nitrogen = white; sulfur = grey, one octant) representing the 50% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
Dimethyl 3-acetyl-3-(1,3-benzothiazol-2-yl)pentanedioate top
Crystal data top
C16H17NO5SF(000) = 704
Mr = 335.37Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9633 reflections
a = 14.4075 (3) Åθ = 2.8–32.7°
b = 8.8089 (2) ŵ = 0.23 mm1
c = 13.8968 (3) ÅT = 100 K
β = 118.011 (1)°Irregular, colourless
V = 1557.10 (6) Å30.54 × 0.47 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3766 independent reflections
Radiation source: fine-focus sealed tube3396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1619
Tmin = 0.884, Tmax = 0.945k = 1111
94263 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.9909P]
where P = (Fo2 + 2Fc2)/3
3766 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H17NO5SV = 1557.10 (6) Å3
Mr = 335.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4075 (3) ŵ = 0.23 mm1
b = 8.8089 (2) ÅT = 100 K
c = 13.8968 (3) Å0.54 × 0.47 × 0.25 mm
β = 118.011 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3766 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3396 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.945Rint = 0.030
94263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
3766 reflectionsΔρmin = 0.23 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07547 (2)0.86573 (3)0.43919 (2)0.01676 (8)
C20.19378 (9)0.80630 (13)0.54977 (9)0.0140 (2)
N30.20635 (8)0.66132 (11)0.56438 (8)0.01443 (19)
C40.11159 (9)0.42603 (14)0.47444 (10)0.0170 (2)
H40.16370.36220.52730.024 (2)*
C50.02392 (10)0.36495 (14)0.38745 (10)0.0190 (2)
H50.01630.25780.38020.024 (2)*
C60.05382 (10)0.45859 (15)0.30984 (10)0.0193 (2)
H60.11320.41350.25080.024 (2)*
C70.04607 (9)0.61526 (15)0.31719 (9)0.0179 (2)
H70.09910.67840.26460.024 (2)*
C80.04263 (9)0.67687 (14)0.40475 (9)0.0149 (2)
C90.12163 (9)0.58417 (13)0.48265 (9)0.0141 (2)
C10.27346 (9)0.92387 (13)0.62176 (9)0.0145 (2)
C100.22105 (9)1.00619 (14)0.68333 (9)0.0160 (2)
O100.18549 (8)1.13226 (10)0.65710 (8)0.0249 (2)
C110.20998 (10)0.91849 (15)0.77027 (10)0.0219 (3)
H1110.27940.90520.83350.0431 (14)*
H1120.17920.81880.74170.0431 (14)*
H1130.16410.97430.79220.0431 (14)*
C200.37450 (9)0.84101 (13)0.70162 (10)0.0173 (2)
H2010.35530.75320.73310.0431 (14)*
H2020.41020.80140.66080.0431 (14)*
C210.45015 (9)0.94072 (14)0.79307 (10)0.0170 (2)
O210.43873 (8)1.07423 (11)0.80278 (8)0.0304 (2)
O220.53173 (7)0.86031 (10)0.86465 (8)0.0229 (2)
C220.60859 (10)0.94308 (15)0.95845 (11)0.0232 (3)
H2210.66520.87421.00550.0431 (14)*
H2220.57470.98520.99930.0431 (14)*
H2230.63791.02580.93390.0431 (14)*
C300.29294 (10)1.04297 (13)0.55238 (10)0.0168 (2)
H3010.22801.10380.51290.0431 (14)*
H3020.34891.11260.60210.0431 (14)*
C310.32428 (9)0.98185 (14)0.47030 (10)0.0177 (2)
O310.34329 (8)0.85225 (11)0.45908 (8)0.0272 (2)
O320.32806 (9)1.09691 (11)0.40907 (8)0.0281 (2)
C320.36038 (13)1.05932 (17)0.32765 (12)0.0309 (3)
H3210.35871.15090.28690.0431 (14)*
H3220.31230.98330.27740.0431 (14)*
H3230.43201.01830.36360.0431 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01835 (15)0.01332 (14)0.01468 (14)0.00202 (10)0.00450 (11)0.00100 (10)
C20.0143 (5)0.0144 (5)0.0137 (5)0.0014 (4)0.0071 (4)0.0008 (4)
N30.0153 (4)0.0135 (5)0.0152 (5)0.0003 (4)0.0078 (4)0.0001 (4)
C40.0197 (6)0.0144 (5)0.0205 (6)0.0007 (4)0.0124 (5)0.0000 (4)
C50.0231 (6)0.0159 (6)0.0229 (6)0.0043 (5)0.0150 (5)0.0047 (5)
C60.0201 (6)0.0236 (6)0.0165 (5)0.0058 (5)0.0105 (5)0.0067 (5)
C70.0184 (5)0.0222 (6)0.0134 (5)0.0001 (5)0.0077 (5)0.0014 (4)
C80.0178 (5)0.0144 (5)0.0153 (5)0.0001 (4)0.0100 (5)0.0011 (4)
C90.0155 (5)0.0150 (5)0.0146 (5)0.0009 (4)0.0094 (4)0.0010 (4)
C10.0161 (5)0.0113 (5)0.0160 (5)0.0002 (4)0.0074 (4)0.0002 (4)
C100.0153 (5)0.0164 (6)0.0149 (5)0.0015 (4)0.0059 (4)0.0022 (4)
O100.0319 (5)0.0192 (5)0.0284 (5)0.0088 (4)0.0181 (4)0.0030 (4)
C110.0260 (6)0.0235 (6)0.0189 (6)0.0034 (5)0.0127 (5)0.0007 (5)
C200.0157 (5)0.0131 (5)0.0193 (6)0.0001 (4)0.0050 (5)0.0006 (4)
C210.0146 (5)0.0172 (6)0.0189 (6)0.0013 (4)0.0077 (5)0.0003 (4)
O210.0262 (5)0.0173 (5)0.0323 (5)0.0016 (4)0.0011 (4)0.0066 (4)
O220.0195 (4)0.0179 (4)0.0214 (4)0.0004 (3)0.0013 (4)0.0009 (4)
C220.0160 (5)0.0240 (6)0.0220 (6)0.0038 (5)0.0026 (5)0.0027 (5)
C300.0211 (6)0.0121 (5)0.0191 (6)0.0011 (4)0.0110 (5)0.0004 (4)
C310.0172 (5)0.0173 (6)0.0187 (6)0.0036 (4)0.0086 (5)0.0019 (5)
O310.0409 (6)0.0178 (5)0.0324 (5)0.0027 (4)0.0250 (5)0.0007 (4)
O320.0501 (6)0.0179 (5)0.0291 (5)0.0045 (4)0.0290 (5)0.0020 (4)
C320.0486 (9)0.0270 (7)0.0308 (7)0.0086 (6)0.0300 (7)0.0046 (6)
Geometric parameters (Å, º) top
S1—C81.7343 (12)C11—H1120.9800
S1—C21.7552 (12)C11—H1130.9800
C2—N31.2924 (15)C20—C211.5078 (16)
C2—C11.5207 (16)C20—H2010.9900
N3—C91.3926 (15)C20—H2020.9900
C4—C51.3827 (18)C21—O211.2038 (16)
C4—C91.3997 (16)C21—O221.3320 (15)
C4—H40.9500O22—C221.4496 (15)
C5—C61.4012 (18)C22—H2210.9800
C5—H50.9500C22—H2220.9800
C6—C71.3845 (18)C22—H2230.9800
C6—H60.9500C30—C311.5095 (16)
C7—C81.3957 (17)C30—H3010.9900
C7—H70.9500C30—H3020.9900
C8—C91.4060 (16)C31—O311.2012 (15)
C1—C301.5373 (16)C31—O321.3409 (15)
C1—C201.5383 (16)O32—C321.4497 (16)
C1—C101.5605 (16)C32—H3210.9800
C10—O101.2055 (15)C32—H3220.9800
C10—C111.5043 (17)C32—H3230.9800
C11—H1110.9800
C8—S1—C288.99 (6)C10—C11—H113109.5
N3—C2—C1124.25 (10)H111—C11—H113109.5
N3—C2—S1116.04 (9)H112—C11—H113109.5
C1—C2—S1119.70 (8)C21—C20—C1113.34 (10)
C2—N3—C9110.46 (10)C21—C20—H201108.9
C5—C4—C9118.40 (11)C1—C20—H201108.9
C5—C4—H4120.8C21—C20—H202108.9
C9—C4—H4120.8C1—C20—H202108.9
C4—C5—C6121.04 (11)H201—C20—H202107.7
C4—C5—H5119.5O21—C21—O22123.70 (11)
C6—C5—H5119.5O21—C21—C20125.51 (11)
C7—C6—C5121.49 (11)O22—C21—C20110.77 (10)
C7—C6—H6119.3C21—O22—C22115.95 (10)
C5—C6—H6119.3O22—C22—H221109.5
C6—C7—C8117.45 (11)O22—C22—H222109.5
C6—C7—H7121.3H221—C22—H222109.5
C8—C7—H7121.3O22—C22—H223109.5
C7—C8—C9121.61 (11)H221—C22—H223109.5
C7—C8—S1129.28 (10)H222—C22—H223109.5
C9—C8—S1109.11 (9)C31—C30—C1115.97 (10)
N3—C9—C4124.73 (11)C31—C30—H301108.3
N3—C9—C8115.28 (10)C1—C30—H301108.3
C4—C9—C8120.00 (11)C31—C30—H302108.3
C2—C1—C30110.85 (9)C1—C30—H302108.3
C2—C1—C20108.53 (9)H301—C30—H302107.4
C30—C1—C20112.75 (10)O31—C31—O32123.80 (11)
C2—C1—C10105.49 (9)O31—C31—C30127.20 (11)
C30—C1—C10107.74 (9)O32—C31—C30109.00 (10)
C20—C1—C10111.26 (9)C31—O32—C32116.51 (11)
O10—C10—C11121.71 (11)O32—C32—H321109.5
O10—C10—C1120.57 (11)O32—C32—H322109.5
C11—C10—C1117.58 (10)H321—C32—H322109.5
C10—C11—H111109.5O32—C32—H323109.5
C10—C11—H112109.5H321—C32—H323109.5
H111—C11—H112109.5H322—C32—H323109.5
C8—S1—C2—N33.31 (9)N3—C2—C1—C10111.43 (12)
C8—S1—C2—C1177.11 (9)S1—C2—C1—C1068.12 (11)
C1—C2—N3—C9177.68 (10)C2—C1—C10—O10104.69 (13)
S1—C2—N3—C92.75 (12)C30—C1—C10—O1013.77 (15)
C9—C4—C5—C60.72 (17)C20—C1—C10—O10137.83 (12)
C4—C5—C6—C70.08 (18)C2—C1—C10—C1171.08 (12)
C5—C6—C7—C80.34 (17)C30—C1—C10—C11170.47 (10)
C6—C7—C8—C90.21 (17)C20—C1—C10—C1146.41 (14)
C6—C7—C8—S1178.77 (9)C2—C1—C20—C21167.17 (9)
C2—S1—C8—C7178.22 (11)C30—C1—C20—C2169.63 (13)
C2—S1—C8—C92.70 (8)C10—C1—C20—C2151.54 (13)
C2—N3—C9—C4179.46 (11)C1—C20—C21—O213.89 (18)
C2—N3—C9—C80.50 (14)C1—C20—C21—O22174.63 (10)
C5—C4—C9—N3178.70 (10)O21—C21—O22—C220.40 (18)
C5—C4—C9—C81.25 (17)C20—C21—O22—C22178.16 (10)
C7—C8—C9—N3178.94 (10)C2—C1—C30—C3153.93 (13)
S1—C8—C9—N31.90 (12)C20—C1—C30—C3167.97 (13)
C7—C8—C9—C41.02 (17)C10—C1—C30—C31168.88 (10)
S1—C8—C9—C4178.15 (9)C1—C30—C31—O316.12 (19)
N3—C2—C1—C30132.23 (12)C1—C30—C31—O32173.84 (10)
S1—C2—C1—C3048.22 (12)O31—C31—O32—C321.96 (19)
N3—C2—C1—C207.89 (15)C30—C31—O32—C32178.08 (11)
S1—C2—C1—C20172.56 (8)

Experimental details

Crystal data
Chemical formulaC16H17NO5S
Mr335.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.4075 (3), 8.8089 (2), 13.8968 (3)
β (°) 118.011 (1)
V3)1557.10 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.54 × 0.47 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.884, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
94263, 3766, 3396
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.02
No. of reflections3766
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.23

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

References

First citationAbayeh, O. J., Olagbemiro, T. O., Agho, M. O. & Amupitan, J. O. (1994). Bull. Soc. Chim. Belg. 103, 687–690.  CrossRef CAS Google Scholar
First citationBénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. J. (1999). Eur. J. Med. Chem. 34, 1053–1060.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. (1994). J. Organomet. Chem. 471, 69–70.  CAS Google Scholar
First citationChu, Q., Wang, Z., Huang, Q., Yan, C. & Zhu, S. (2003). New J. Chem. 27, 1522–1527.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl-Sherbeny, M. A. (2000). Arzneim. Forsch. 50, 848–853.  CAS Google Scholar
First citationIvanov, S. V. & Yuritsyn, V. S. (1971). Neftekhimiya, 11, 99–107.  CAS Google Scholar
First citationLee, C. L., Lam, Y. & Lee, S.-Y. (2001). Tetrahedron Lett. 42, 109–111.  Web of Science CrossRef CAS Google Scholar
First citationMonsanto, C. O. (1968). Br. Patent No. 1 106 577.  Google Scholar
First citationPalmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds