organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

anti-Tri­cyclo­[4.2.1.12,5]deca-3,7-diene-9-endo,10-endo-diol

aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
*Correspondence e-mail: djones@uncc.edu, metzkorn@uncc.edu

(Received 30 September 2008; accepted 29 October 2008; online 8 November 2008)

The title compound, C10H12O2, was synthesized as a candidate for further functionalization. The asymmetric unit comprises two independent mol­ecules, both of which are situated on a center of symmetry. Both mol­ecules are involved in a network of hydrogen bonding, with each alcohol group participating in one hydrogen bond as a donor and in a second hydrogen bond as an acceptor.

Related literature

For a related structure, see: Eaton et al. (2002[Eaton, P. E., Tang, D. & Gilardi, R. (2002). Tetrahedron Lett. 43, 3-5.]). For synthesis details, see: Baggiolini et al. (1967[Baggiolini, E., Herzog, E. G., Iwaski, S., Schorta, R. & Schaffner, K. (1967). Helv. Chim. Acta, 50, 297-306.]); Klinsmann et al. (1972[Klinsmann, U., Gauthier, J., Schaffner, K., Pasternak, M. & Fuchs, B. (1972). Helv. Chim. Acta, 55, 2643-2659.]); Prakash et al. (1987[Prakash, G. K. S., Farnia, M., Keyanian, S., Olah, G. A., Kuhn, H. J. & Schaffner, K. (1987). J. Am. Chem. Soc. 109, 911-912.]); Herzog (1958[Herzog, E. G. (1958). PhD thesis, ETH Zürich, Switzerland.]). For synthesis details and compound characterization, see: Amman et al. (1980[Amman, W., Jäggi, F. J. & Ganter, C. (1980). Helv. Chim. Acta, 63, 2019-2041.]). For synthetic routes utilizing the title compound as a starting material, see: Amman & Ganter (1977[Amman, W. & Ganter, C. (1977). Helv. Chim. Acta, 60, 1924-1925.], 1981[Amman, W. & Ganter, C. (1981). Helv. Chim. Acta, 65, 966-1022.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O2

  • Mr = 164.2

  • Monoclinic, P 21 /c

  • a = 10.3730 (14) Å

  • b = 9.8494 (14) Å

  • c = 7.7128 (11) Å

  • β = 91.850 (11)°

  • V = 787.59 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 295 (2) K

  • 0.5 × 0.5 × 0.5 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5405 measured reflections

  • 1419 independent reflections

  • 1386 reflections with I > 2σ(I)

  • Rint = 0.038

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.08

  • 1419 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯O2i 0.82 1.95 2.7452 (15) 163
O2—HO2⋯O1 0.82 1.99 2.8005 (14) 170
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The polycyclic title compound 4 has gained importance as a precursor to a bishomoaromatic dication (Prakash et al., 1987) and was furthermore investigated in a synthetic approach to heterodiamantanes (Amman et al., 1980; Amman & Ganter, 1977; Amman & Ganter, 1981). We were interested in the functionalization of dienedione 3, which is a rather challenging task if one considers the issue of chemoselectivity, regioselectivity and stereoselectivity in a relatively small polycyclic skeleton with two olefinic bonds and two carbonyl groups in close proximity. Furthermore, a thermally induced isomerization of compound 3 to the endo-cyclopentadienone dimer 2 (Baggiolini et al., 1967; Klinsmann et al., 1972) prohibited several functionalization reactions that required forcing conditions. We therefore focused on the thermally stable dienediol 4.

Two pairs of independent molecules (Figure 1) comprise the four molecules in the unit cell, each of which is situated on a center of symmetry. All of the molecules are involved in a network of hydrogen bonding (Figure 2), with each alcohol group participating in one hydrogen bond as a donor and in a second hydrogen bond as an acceptor.

Related literature top

For a related structure, see: Eaton et al. (2002). For synthesis details, see: Baggiolini et al. (1967); Klinsmann et al. (1972); Prakash et al. (1987); Herzog (1958). For synthesis details and compound characterization, see: Amman et al. (1980). For synthetic routes utilizing the title compound as a starting material, see: Amman & Ganter (1977, 1981).

Experimental top

Preparation of dienedione 2 (Herzog, 1958): A solution of sodium ethoxide in ethanol was prepared by adding sodium (44.4 g, 1.94 mol) in small pieces to ethanol (2 l). A mixture of freshly distilled cyclopentadiene monomer (74 g, 1.12 mol) and isoamylnitrite (131 g, 1.12 mol) was then added dropwise at 15–20 °C. The dark brown reaction mixture was stirred for 30 minutes, poured on ice (0.5 kg) and extracted with ether (3 × 300 ml). These organic extracts were discarded, and the aqueous phase was acidified to pH 3 with 2.5 M sulfuric acid (ca 600 ml). After saturating with sodium chloride (ca 250 g) the aqueous phase was extracted with ether (5 × 600 ml). The combined organic phase was concentrated to a third of its volume, washed with water (100 ml) and dried (MgSO4). After removal of the solvent the viscous brown oil obtained (62 g) was refluxed in 1M sulfuric acid (1500 ml) for several hours and stirred at room temperature overnight. The reaction mixture was saturated with sodium chloride (ca 0.5 kg) and extracted with ether (5 × 400 ml). The combined organic phase was concentrated, washed with water, and dried (MgSO4). After removal of the solvent a pale-brown crude product was obtained. Sublimation furnished the clean product (27 g, 30% with respect to cyclopentadiene) as a colorless solid.

After the photoisomerization of dienedione 2 to dienedione 3 (Baggiolini et al., 1967; Klinsmann et al., 1972) a reduction with LiAlH4 in THF yielded diol 4 (Amman et al., 1980; Prakash et al., 1987). We were able to grow single crystals of diol 4 from CHCl3 and thus provide structural details of the otherwise fully characterized compound (Amman et al., 1980).

Refinement top

H atoms were constrained using a riding model. The olefinic C—H bond lengths were fixed at 0.93 Å and the methine C—H bond lengths at 0.98 Å, with Uiso(H) = 1.2 Ueq. (C). The O—H bond lengths were fixed at 0.82 Å, with Uiso(H) = 1.5 Ueq. (C), and the torsion angles about the C—O bonds were refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the two independent molecules of the title compound, 4, with 50% probability displacement ellipsoids. [Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 2, -y + 1, -z]
[Figure 2] Fig. 2. Packing diagram showing two of the hydrogen bonds in the hydrogen bonding network of the structure.
[Figure 3] Fig. 3. The formation of the title compound.
anti-Tricyclo[4.2.1.12,5]deca-3,7-diene-9-endo,10-endo- diol top
Crystal data top
C10H12O2F(000) = 352
Mr = 164.2Dx = 1.385 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 10.3730 (14) Åθ = 36.5–41.8°
b = 9.8494 (14) ŵ = 0.77 mm1
c = 7.7128 (11) ÅT = 295 K
β = 91.850 (11)°Irregular, brown
V = 787.59 (19) Å30.5 × 0.5 × 0.5 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 67.5°, θmin = 4.3°
Nonprofiled ω/2θ scansh = 1212
5405 measured reflectionsk = 1111
1419 independent reflectionsl = 99
1386 reflections with I > 2σ(I)3 standard reflections every 60 min
Rint = 0.038 intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2879P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.100Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.19 e Å3
1419 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
112 parametersExtinction coefficient: 0.025 (2)
0 restraints
Crystal data top
C10H12O2V = 787.59 (19) Å3
Mr = 164.2Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.3730 (14) ŵ = 0.77 mm1
b = 9.8494 (14) ÅT = 295 K
c = 7.7128 (11) Å0.5 × 0.5 × 0.5 mm
β = 91.850 (11)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.038
5405 measured reflections3 standard reflections every 60 min
1419 independent reflections intensity decay: none
1386 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
1419 reflectionsΔρmin = 0.19 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79276 (9)0.37798 (11)0.08942 (13)0.0372 (3)
HO10.74630.36840.17660.056*
O20.68564 (9)0.15711 (10)0.08353 (13)0.0375 (3)
HO20.72520.21970.03960.056*
C100.44926 (13)0.09207 (14)0.11758 (19)0.0306 (3)
H100.43570.14530.22280.037*
C20.96268 (12)0.55937 (14)0.15964 (18)0.0301 (3)
H20.91180.6070.25010.036*
C70.53244 (12)0.06358 (14)0.15675 (17)0.0296 (3)
H70.58160.09420.25590.036*
C51.03469 (12)0.36341 (14)0.01805 (19)0.0309 (3)
H51.03830.26460.00350.037*
C10.92078 (12)0.40891 (14)0.13877 (18)0.0307 (3)
H10.93280.36480.2510.037*
C60.55870 (13)0.15044 (13)0.00772 (18)0.0295 (3)
H60.53390.24370.02240.035*
C31.09864 (13)0.52746 (16)0.21451 (18)0.0352 (4)
H31.14540.57780.29280.042*
C80.39004 (13)0.09802 (14)0.1751 (2)0.0342 (4)
H80.34350.10690.27960.041*
C90.34268 (13)0.11333 (14)0.0195 (2)0.0352 (4)
H90.25730.13390.00270.042*
C41.13997 (13)0.41653 (15)0.1333 (2)0.0363 (4)
H41.22070.37720.14480.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (5)0.0435 (6)0.0395 (6)0.0110 (4)0.0058 (4)0.0054 (5)
O20.0326 (6)0.0343 (6)0.0447 (6)0.0107 (4)0.0120 (4)0.0087 (4)
C100.0302 (7)0.0286 (7)0.0332 (7)0.0013 (5)0.0017 (5)0.0035 (5)
C20.0264 (7)0.0336 (7)0.0301 (7)0.0008 (5)0.0023 (5)0.0079 (6)
C70.0291 (7)0.0315 (7)0.0281 (7)0.0037 (5)0.0017 (5)0.0057 (5)
C50.0278 (7)0.0246 (6)0.0403 (8)0.0030 (5)0.0023 (6)0.0017 (6)
C10.0276 (7)0.0332 (7)0.0312 (7)0.0041 (5)0.0004 (5)0.0012 (6)
C60.0285 (7)0.0241 (6)0.0353 (8)0.0024 (5)0.0060 (5)0.0037 (5)
C30.0311 (7)0.0438 (8)0.0310 (7)0.0054 (6)0.0067 (6)0.0003 (6)
C80.0313 (7)0.0279 (7)0.0424 (8)0.0039 (6)0.0124 (6)0.0100 (6)
C90.0253 (7)0.0271 (7)0.0530 (9)0.0041 (5)0.0012 (6)0.0042 (6)
C40.0278 (7)0.0405 (8)0.0411 (8)0.0040 (6)0.0075 (6)0.0050 (6)
Geometric parameters (Å, º) top
O1—C11.4261 (16)C7—H70.98
O1—HO10.82C5—C41.5227 (18)
O2—C61.4248 (16)C5—C11.5469 (19)
O2—HO20.82C5—C2ii1.567 (2)
C10—C91.520 (2)C5—H50.98
C10—C61.5490 (18)C1—H10.98
C10—C7i1.5728 (18)C6—H60.98
C10—H100.98C3—C41.324 (2)
C2—C31.5183 (18)C3—H30.93
C2—C11.5542 (19)C8—C91.320 (2)
C2—C5ii1.567 (2)C8—H80.93
C2—H20.98C9—H90.93
C7—C81.5178 (18)C4—H40.93
C7—C61.5469 (19)
C1—O1—HO1109.5C2ii—C5—H5112.5
C6—O2—HO2109.5O1—C1—C5118.51 (12)
C9—C10—C695.61 (11)O1—C1—C2119.82 (11)
C9—C10—C7i110.40 (11)C5—C1—C297.34 (10)
C6—C10—C7i112.38 (11)O1—C1—H1106.7
C9—C10—H10112.4C5—C1—H1106.7
C6—C10—H10112.4C2—C1—H1106.7
C7i—C10—H10112.4O2—C6—C7119.86 (11)
C3—C2—C195.56 (11)O2—C6—C10118.46 (11)
C3—C2—C5ii110.74 (11)C7—C6—C1097.50 (10)
C1—C2—C5ii111.67 (11)O2—C6—H6106.6
C3—C2—H2112.6C7—C6—H6106.6
C1—C2—H2112.6C10—C6—H6106.6
C5ii—C2—H2112.6C4—C3—C2109.17 (12)
C8—C7—C695.63 (11)C4—C3—H3125.4
C8—C7—C10i110.29 (11)C2—C3—H3125.4
C6—C7—C10i111.38 (11)C9—C8—C7109.28 (12)
C8—C7—H7112.8C9—C8—H8125.4
C6—C7—H7112.8C7—C8—H8125.4
C10i—C7—H7112.8C8—C9—C10109.46 (12)
C4—C5—C195.60 (11)C8—C9—H9125.3
C4—C5—C2ii110.56 (11)C10—C9—H9125.3
C1—C5—C2ii112.16 (11)C3—C4—C5109.41 (12)
C4—C5—H5112.5C3—C4—H4125.3
C1—C5—H5112.5C5—C4—H4125.3
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O2iii0.821.952.7452 (15)163
O2—HO2···O10.821.992.8005 (14)170
Symmetry code: (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12O2
Mr164.2
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.3730 (14), 9.8494 (14), 7.7128 (11)
β (°) 91.850 (11)
V3)787.59 (19)
Z4
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.5 × 0.5 × 0.5
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5405, 1419, 1386
Rint0.038
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.08
No. of reflections1419
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O2i0.821.952.7452 (15)163
O2—HO2···O10.821.992.8005 (14)170
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

Acknowledgement is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. This work was supported in part by funds provided by The University of North Carolina at Charlotte.

References

First citationAmman, W. & Ganter, C. (1977). Helv. Chim. Acta, 60, 1924–1925.  CrossRef Web of Science Google Scholar
First citationAmman, W. & Ganter, C. (1981). Helv. Chim. Acta, 65, 966–1022.  Google Scholar
First citationAmman, W., Jäggi, F. J. & Ganter, C. (1980). Helv. Chim. Acta, 63, 2019–2041.  CrossRef Web of Science Google Scholar
First citationBaggiolini, E., Herzog, E. G., Iwaski, S., Schorta, R. & Schaffner, K. (1967). Helv. Chim. Acta, 50, 297–306.  CrossRef CAS Web of Science Google Scholar
First citationEaton, P. E., Tang, D. & Gilardi, R. (2002). Tetrahedron Lett. 43, 3–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHerzog, E. G. (1958). PhD thesis, ETH Zürich, Switzerland.  Google Scholar
First citationKlinsmann, U., Gauthier, J., Schaffner, K., Pasternak, M. & Fuchs, B. (1972). Helv. Chim. Acta, 55, 2643–2659.  CrossRef CAS Web of Science Google Scholar
First citationPrakash, G. K. S., Farnia, M., Keyanian, S., Olah, G. A., Kuhn, H. J. & Schaffner, K. (1987). J. Am. Chem. Soc. 109, 911–912.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds