organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Oxonium ammonio­(cyclo­prop­yl)methyl­enebis(hydrogenphospho­nate) monohydrate

aV. I. Vernadskii Institute of General and Inorganic Chemistry, Kyiv 03680, Ukraine
*Correspondence e-mail: bon@ionc.kiev.ua

(Received 7 October 2008; accepted 10 November 2008; online 13 November 2008)

The title compound, H3O+·C4H10NO6P2·H2O, was obtained from the reaction of cyclo­propane­carbonitrile with PCl3, followed by dropwise addition of water. The asymmetric unit comprises an oxonium cation, a zwitterionic monoanion containing a positively charged ammonium group and two negatively charged phospho­nic acid residues and a water mol­ecule of crystallization. The hydroxonium cation and water mol­ecule are hydrogen bonded to the anion and further N—H⋯O and O—H⋯O bonds create a three-dimensional network.

Related literature

Diphospho­nic acids are efficient drugs for the prevention of calcification and the inhibition bone resorption (Tromelin et al., 1986[Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301-312.], Matczak-Jon & Videnova-Adrabinska, 2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]) and are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002[Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • H3O+·C4H10NO6P2·H2O

  • Mr = 267.11

  • Monoclinic, P 21 /n

  • a = 12.5054 (8) Å

  • b = 5.6169 (4) Å

  • c = 14.3296 (8) Å

  • β = 94.973 (4)°

  • V = 1002.74 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 100 (2) K

  • 0.56 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 0.973

  • 14938 measured reflections

  • 2076 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.111

  • S = 1.01

  • 2076 reflections

  • 166 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.88 (4) 1.92 (4) 2.767 (4) 161 (3)
N1—H1B⋯O3ii 0.84 (3) 2.23 (3) 2.859 (4) 133 (3)
N1—H1B⋯O6ii 0.84 (3) 2.32 (3) 3.017 (4) 142 (3)
N1—H1C⋯O1i 0.86 (4) 2.05 (4) 2.846 (4) 154 (3)
O2—H2O⋯O1iii 0.78 (3) 1.75 (3) 2.521 (3) 178 (5)
O6—H6O⋯O3ii 0.81 (4) 1.70 (4) 2.508 (3) 171 (4)
O7—H71O⋯O4iv 0.81 (2) 1.79 (3) 2.600 (3) 171 (4)
O7—H72O⋯O8ii 0.82 (3) 1.76 (3) 2.555 (4) 164 (4)
O7—H73O⋯O5 1.09 (4) 1.35 (4) 2.441 (3) 175 (3)
O8—H82O⋯O2 0.82 (3) 2.12 (3) 2.871 (3) 153 (4)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The asymmetric unit of titled compound (Fig. 1) contains one molecule which exists as zwitterions with the proton transferred from one of the phosphonic group to the nitrogen atom. In the crystal structure of the compound the phosphorus atom displays a slightly distorted tetrahedral geometry provided by three oxygen atoms and one carbon atom. Bond lengths and angles have normal values (Allen et al., 1987). The asymmetric unit contains one hydroxonium ion and one water molecule. The structure is stabilized by three-dimensional intramolecular O—H···O and N—H···O hydrogen bonds network (Table 1).

Related literature top

Diphosphonic acids are efficient drugs for the prevention of calcification and the inhibition bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005) and are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002).For bond-length data, see: Allen et al. (1987).

Experimental top

The preparation of oxonium ammonio(cyclopropyl)methylenebis(hydrogenphosphonate) hydrate was provided as follows. Dry hydrogen chloride at about 278 K was brought into contact with the surface of a mixture of cyclopropanecarbonitrile (73.7 ml, 1 mol) and PCl3 (87.4 ml, 1 mol) while stirring the mixture drop-wise addition of water (54 ml, 3 mol) was made in the molar ratio 1:1:3. After an a hour the solution becomes cloudy and sets. After cooling the product it was dissolved in water and separated by addition of acetone. The saturated solution was left at room temperature. Colourless crystals of the title compound were obtained after 1 week.

Refinement top

H atoms bonded to O and N atoms were located in a difference map. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å for CH2 [Uiso(H) = 1.2Ueq(N)] and C—H = 1.00 Å for CH [Uiso(H) = 1.2Ueq(C)]. The strong H-bond between O5 and O7 was treated as an equilibrium between hydroxonium ion and water molecule. The position of the H atom was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of title compound, projection along b axis. Dashed lines indicate hydrogen bonds.
Oxonium ammonio(cyclopropyl)methylenebis(hydrogenphosphonate) monohydrate top
Crystal data top
H3O+·C4H10NO6P2·H2OF(000) = 560
Mr = 267.11Dx = 1.769 Mg m3
Monoclinic, P21/nMelting point: 493 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.5054 (8) ÅCell parameters from 1935 reflections
b = 5.6169 (4) Åθ = 2.3–26.4°
c = 14.3296 (8) ŵ = 0.46 mm1
β = 94.973 (4)°T = 100 K
V = 1002.74 (11) Å3Needle, colourless
Z = 40.56 × 0.07 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2076 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
ϕ and ω scansθmax = 26.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.782, Tmax = 0.973k = 77
14938 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0546P)2]
where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.64 e Å3
6 restraintsΔρmin = 0.48 e Å3
Crystal data top
H3O+·C4H10NO6P2·H2OV = 1002.74 (11) Å3
Mr = 267.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5054 (8) ŵ = 0.46 mm1
b = 5.6169 (4) ÅT = 100 K
c = 14.3296 (8) Å0.56 × 0.07 × 0.06 mm
β = 94.973 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2076 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1411 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.973Rint = 0.117
14938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.64 e Å3
2076 reflectionsΔρmin = 0.48 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.39124 (6)1.00254 (15)0.88098 (5)0.0097 (2)
P20.42829 (7)0.97159 (15)0.67003 (6)0.0107 (2)
C10.4541 (3)0.8406 (5)0.7872 (2)0.0098 (7)
C20.5754 (3)0.8349 (6)0.8120 (2)0.0122 (7)
H2A0.60980.99510.80900.015*
C30.6295 (3)0.6770 (6)0.8865 (2)0.0161 (8)
H3A0.68970.74490.92750.019*
H3B0.58430.56150.91750.019*
C40.6466 (3)0.6358 (7)0.7858 (2)0.0186 (8)
H4A0.61200.49470.75460.022*
H4B0.71740.67800.76460.022*
N10.4080 (2)0.5913 (5)0.7841 (2)0.0098 (6)
H1A0.436 (3)0.499 (6)0.743 (3)0.015*
H1B0.341 (2)0.588 (6)0.778 (2)0.015*
H1C0.427 (3)0.513 (6)0.835 (3)0.015*
O10.46292 (18)1.2100 (4)0.91003 (15)0.0121 (5)
O20.38814 (18)0.8132 (4)0.95991 (15)0.0121 (5)
O30.27864 (18)1.0669 (4)0.84573 (15)0.0138 (5)
O40.46954 (18)1.2202 (4)0.67350 (15)0.0130 (5)
O50.48317 (18)0.8051 (4)0.60598 (15)0.0137 (5)
O60.30505 (19)0.9707 (4)0.64379 (16)0.0133 (5)
O70.3973 (2)0.6970 (5)0.45230 (18)0.0263 (7)
H2O0.434 (3)0.810 (7)1.000 (2)0.032*
H6O0.282 (3)0.835 (8)0.643 (3)0.032*
H71O0.438 (3)0.709 (7)0.411 (2)0.032*
H72O0.378 (3)0.558 (5)0.448 (3)0.032*
H73O0.432 (3)0.742 (7)0.522 (3)0.032*
O80.1988 (2)0.7952 (5)1.0595 (2)0.0285 (7)
H81O0.163 (3)0.679 (6)1.066 (3)0.034*
H82O0.247 (3)0.754 (7)1.028 (3)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0087 (5)0.0105 (4)0.0095 (4)0.0000 (4)0.0012 (3)0.0002 (3)
P20.0116 (5)0.0105 (5)0.0096 (4)0.0001 (4)0.0008 (3)0.0003 (3)
C10.0068 (16)0.0092 (17)0.0126 (16)0.0009 (13)0.0029 (13)0.0001 (13)
C20.0071 (17)0.0149 (18)0.0143 (17)0.0033 (14)0.0004 (13)0.0038 (13)
C30.0088 (18)0.020 (2)0.0183 (18)0.0005 (15)0.0028 (14)0.0006 (15)
C40.0114 (19)0.024 (2)0.0200 (19)0.0026 (15)0.0017 (15)0.0064 (15)
N10.0075 (15)0.0090 (14)0.0127 (14)0.0008 (12)0.0004 (12)0.0001 (12)
O10.0133 (12)0.0111 (12)0.0112 (11)0.0008 (10)0.0018 (9)0.0009 (9)
O20.0114 (13)0.0148 (12)0.0098 (11)0.0003 (10)0.0017 (9)0.0006 (10)
O30.0115 (12)0.0161 (13)0.0136 (12)0.0022 (10)0.0010 (9)0.0030 (9)
O40.0149 (13)0.0148 (13)0.0094 (11)0.0003 (10)0.0011 (9)0.0009 (9)
O50.0134 (12)0.0140 (12)0.0133 (12)0.0033 (10)0.0011 (9)0.0012 (10)
O60.0135 (13)0.0112 (12)0.0145 (11)0.0009 (10)0.0028 (9)0.0004 (10)
O70.0203 (16)0.0480 (18)0.0108 (13)0.0117 (14)0.0024 (11)0.0047 (14)
O80.0180 (16)0.0335 (17)0.0356 (17)0.0026 (13)0.0110 (13)0.0120 (14)
Geometric parameters (Å, º) top
P1—O31.498 (2)C3—H3B0.9900
P1—O11.507 (2)C4—H4A0.9900
P1—O21.555 (2)C4—H4B0.9900
P1—C11.853 (3)N1—H1A0.88 (4)
P2—O41.488 (2)N1—H1B0.84 (3)
P2—O51.516 (2)N1—H1C0.86 (4)
P2—O61.554 (2)O2—H2O0.78 (3)
P2—C11.835 (3)O5—H73O1.35 (4)
C1—N11.514 (4)O6—H6O0.81 (4)
C1—C21.528 (4)O7—H71O0.81 (2)
C2—C41.498 (5)O7—H72O0.82 (3)
C2—C31.503 (5)O7—H73O1.09 (4)
C2—H2A1.0000O8—H81O0.80 (3)
C3—C41.496 (5)O8—H82O0.82 (3)
C3—H3A0.9900
O3—P1—O1115.19 (13)C4—C3—H3A117.8
O3—P1—O2109.16 (13)C2—C3—H3A117.8
O1—P1—O2112.32 (12)C4—C3—H3B117.8
O3—P1—C1108.60 (13)C2—C3—H3B117.8
O1—P1—C1107.49 (14)H3A—C3—H3B114.9
O2—P1—C1103.34 (14)C3—C4—C260.3 (2)
O4—P2—O5115.18 (13)C3—C4—H4A117.7
O4—P2—O6110.17 (13)C2—C4—H4A117.7
O5—P2—O6110.06 (13)C3—C4—H4B117.7
O4—P2—C1108.21 (13)C2—C4—H4B117.7
O5—P2—C1104.70 (13)H4A—C4—H4B114.9
O6—P2—C1108.16 (14)C1—N1—H1A113 (2)
N1—C1—C2110.8 (3)C1—N1—H1B113 (3)
N1—C1—P2107.9 (2)H1A—N1—H1B112 (3)
C2—C1—P2108.3 (2)C1—N1—H1C111 (2)
N1—C1—P1106.9 (2)H1A—N1—H1C100 (3)
C2—C1—P1108.4 (2)H1B—N1—H1C106 (3)
P2—C1—P1114.51 (17)P1—O2—H2O119 (3)
C4—C2—C359.8 (2)P2—O5—H73O119.6 (16)
C4—C2—C1123.8 (3)P2—O6—H6O110 (3)
C3—C2—C1123.7 (3)H71O—O7—H72O103 (4)
C4—C2—H2A113.2H71O—O7—H73O115 (4)
C3—C2—H2A113.2H72O—O7—H73O112 (4)
C1—C2—H2A113.2H81O—O8—H82O106 (4)
C4—C3—C259.9 (2)
O4—P2—C1—N1177.8 (2)O1—P1—C1—C239.6 (2)
O5—P2—C1—N158.9 (2)O2—P1—C1—C279.4 (2)
O6—P2—C1—N158.4 (2)O3—P1—C1—P243.8 (2)
O4—P2—C1—C262.2 (2)O1—P1—C1—P281.46 (18)
O5—P2—C1—C261.1 (2)O2—P1—C1—P2159.60 (16)
O6—P2—C1—C2178.4 (2)N1—C1—C2—C431.4 (4)
O4—P2—C1—P158.9 (2)P2—C1—C2—C486.8 (3)
O5—P2—C1—P1177.81 (16)P1—C1—C2—C4148.4 (3)
O6—P2—C1—P160.5 (2)N1—C1—C2—C342.3 (4)
O3—P1—C1—N175.7 (2)P2—C1—C2—C3160.5 (3)
O1—P1—C1—N1159.06 (19)P1—C1—C2—C374.7 (3)
O2—P1—C1—N140.1 (2)C1—C2—C3—C4112.7 (4)
O3—P1—C1—C2164.8 (2)C1—C2—C4—C3112.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.88 (4)1.92 (4)2.767 (4)161 (3)
N1—H1B···O3ii0.84 (3)2.23 (3)2.859 (4)133 (3)
N1—H1B···O6ii0.84 (3)2.32 (3)3.017 (4)142 (3)
N1—H1C···O1i0.86 (4)2.05 (4)2.846 (4)154 (3)
O2—H2O···O1iii0.78 (3)1.75 (3)2.521 (3)178 (5)
O7—H73O···O51.09 (4)1.35 (4)2.441 (3)175 (3)
O6—H6O···O3ii0.81 (4)1.70 (4)2.508 (3)171 (4)
O7—H71O···O4iv0.81 (2)1.79 (3)2.600 (3)171 (4)
O7—H72O···O8ii0.82 (3)1.76 (3)2.555 (4)164 (4)
O8—H82O···O20.82 (3)2.12 (3)2.871 (3)153 (4)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+2, z+2; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaH3O+·C4H10NO6P2·H2O
Mr267.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.5054 (8), 5.6169 (4), 14.3296 (8)
β (°) 94.973 (4)
V3)1002.74 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.56 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.782, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
14938, 2076, 1411
Rint0.117
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.111, 1.01
No. of reflections2076
No. of parameters166
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.88 (4)1.92 (4)2.767 (4)161 (3)
N1—H1B···O3ii0.84 (3)2.23 (3)2.859 (4)133 (3)
N1—H1B···O6ii0.84 (3)2.32 (3)3.017 (4)142 (3)
N1—H1C···O1i0.86 (4)2.05 (4)2.846 (4)154 (3)
O2—H2O···O1iii0.78 (3)1.75 (3)2.521 (3)178 (5)
O7—H73O···O51.09 (4)1.35 (4)2.441 (3)175 (3)
O6—H6O···O3ii0.81 (4)1.70 (4)2.508 (3)171 (4)
O7—H71O···O4iv0.81 (2)1.79 (3)2.600 (3)171 (4)
O7—H72O···O8ii0.82 (3)1.76 (3)2.555 (4)164 (4)
O8—H82O···O20.82 (3)2.12 (3)2.871 (3)153 (4)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+2, z+2; (iv) x+1, y+2, z+1.
 

Acknowledgements

The authors offer special thanks to Dr E. B. Rusanov for his help with the article preparation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds