metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ferrocenyl-6-methyl­pyridin-3-ol

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 16 November 2008; accepted 24 November 2008; online 29 November 2008)

In the title compound, [Fe(C5H5)(C11H10NO)], the dihedral angle between the pyridyl and substituted cyclo­penta­dienyl rings is 20.4 (3)°. The H atoms of the methyl group are disordered over two positions; their site-occupation factors were fixed at 0.5. The crystal structure is stabilized by well defined inter­molecular O—H⋯N and C—H⋯O hydrogen bonds, leading to the formation of a two-dimensional network parallel to (101).

Related literature

For ferrocene and its derivatives, see: Beletskaya et al. (2001[Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637-639, 653-663.]); Hayashi & Togni (1995[Hayashi, T. & Togni, A. (1995). Editors. Ferrocenes VCH: Weinhein: VCH.]); Kealy & Pauson (1951[Kealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039-1040.]); Sarhan & Izumi (2003[Sarhan, A. A. O. & Izumi, T. (2003). J. Organomet. Chem. 675, 1-12.]); Staveren & Metzler-Nolte (2004[Staveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931-5985.]); Xu et al. (2007[Xu, C., Gong, J. F. & Wu, Y. J. (2007). Tetrahedron Lett. 48, 1619-1623.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C11H10NO)]

  • Mr = 293.14

  • Monoclinic, P 21 /n

  • a = 10.4370 (13) Å

  • b = 12.7196 (15) Å

  • c = 10.5424 (13) Å

  • β = 111.0330 (10)°

  • V = 1306.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 291 (2) K

  • 0.37 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.675, Tmax = 0.793

  • 7569 measured reflections

  • 2422 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.08

  • 2422 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.96 2.774 (3) 169
C7—H7⋯O1 0.98 2.39 2.866 (4) 109
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the discovery of ferrocene in the 1950's (Kealy & Pauson, 1951), the fascinating structural properties of ferrocene and its derivatives have been the subject of increasing interest in all fields of organometallic chemistry (Hayashi et al., 1995; Staveren et al., 2004; Xu et al., 2007). Among them, ferrocene-heterocycles are one of the most important ones (Sarhan & Izumi, 2003). Herein we report the crystal structure of the title compound.

A view of the molecular structure of the title compound is given in Fig.1. The hydrogen atoms of methyl groups are disordered; site-occupation factors were fixed at 0.5. The pyridyl and Cp ring form a dihedral angle of 20.4 (3)°. In the crystal of the title compound, intermolecular O—H···N and C—H···O hydrogen bonds are present(Table 1), resulting in a two-dimensional supramolecular architecture(Fig.2).

Related literature top

For ferrocene and its derivatives, see: Beletskaya et al. (2001); Hayashi & Togni (1995); Kealy & Pauson (1951); Sarhan & Izumi (2003); Staveren & Metzler-Nolte (2004); Xu et al. (2007).

Experimental top

The title compound was prepared as described in literature (Beletskaya et al., 2001) and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as red crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uĩso~(H)=1.2Ueq(C)(1.5Ueq for methyl H).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. Only one disordered component of the methyl group is shown.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the intermolecular O—H···N and C—H···O hydrogen bonds. One disordered component of the methyl group has been omitted for clarity.
2-Ferrocenyl-6-methylpyridin-3-ol top
Crystal data top
[Fe(C5H5)(C11H10NO)]F(000) = 608
Mr = 293.14Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2766 reflections
a = 10.4370 (13) Åθ = 2.4–25.0°
b = 12.7196 (15) ŵ = 1.14 mm1
c = 10.5424 (13) ÅT = 291 K
β = 111.033 (1)°Block, red
V = 1306.3 (3) Å30.37 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2422 independent reflections
Radiation source: fine-focus sealed tube1970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.675, Tmax = 0.794k = 1515
7569 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.046P)2 + 0.7167P]
where P = (Fo2 + 2Fc2)/3
2422 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Fe(C5H5)(C11H10NO)]V = 1306.3 (3) Å3
Mr = 293.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4370 (13) ŵ = 1.14 mm1
b = 12.7196 (15) ÅT = 291 K
c = 10.5424 (13) Å0.37 × 0.23 × 0.21 mm
β = 111.033 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2422 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1970 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.794Rint = 0.021
7569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.09Δρmax = 0.63 e Å3
2422 reflectionsΔρmin = 0.54 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.35569 (4)1.02041 (3)0.20685 (4)0.04595 (16)
O10.5672 (2)0.78281 (18)0.36235 (18)0.0576 (5)
H10.64890.76880.39930.086*
N10.3444 (2)0.74252 (16)0.0124 (2)0.0424 (5)
C10.3813 (5)1.1764 (3)0.1792 (5)0.0962 (14)
H1A0.30751.22830.14540.115*
C20.4350 (5)1.1151 (3)0.0982 (4)0.0905 (13)
H20.40571.11770.00110.109*
C30.5377 (4)1.0523 (3)0.1836 (4)0.0788 (11)
H30.59321.00190.15520.095*
C40.5481 (4)1.0718 (3)0.3185 (4)0.0827 (11)
H40.61251.03860.40040.099*
C50.4490 (4)1.1502 (3)0.3136 (4)0.0856 (12)
H50.43251.18060.39180.103*
C60.3115 (3)0.8626 (2)0.1744 (3)0.0452 (6)
C70.3146 (3)0.8949 (3)0.3049 (3)0.0573 (7)
H70.37540.86660.39220.069*
C80.2150 (3)0.9752 (3)0.2872 (4)0.0693 (9)
H80.19481.01140.36000.083*
C90.1511 (3)0.9943 (3)0.1476 (4)0.0778 (11)
H90.07871.04620.10610.093*
C100.2095 (3)0.9257 (3)0.0766 (3)0.0638 (9)
H100.18490.92270.02220.077*
C110.3946 (2)0.78116 (19)0.1409 (2)0.0389 (6)
C120.5209 (3)0.7445 (2)0.2335 (2)0.0419 (6)
C130.5943 (3)0.6722 (2)0.1894 (3)0.0487 (7)
H130.67800.64720.24900.058*
C140.5436 (3)0.6372 (2)0.0573 (3)0.0489 (6)
H140.59360.58960.02640.059*
C150.4175 (3)0.6734 (2)0.0295 (3)0.0455 (6)
C160.3599 (3)0.6378 (3)0.1758 (3)0.0637 (8)
H16A0.27240.67050.22070.096*0.50
H16B0.34900.56280.17900.096*0.50
H16C0.42170.65740.22060.096*0.50
H16D0.42300.59000.19290.096*0.50
H16E0.34640.69770.23450.096*0.50
H16F0.27370.60300.19290.096*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0494 (3)0.0480 (3)0.0396 (2)0.00711 (17)0.01483 (18)0.00218 (16)
O10.0420 (11)0.0758 (14)0.0404 (10)0.0147 (10)0.0031 (8)0.0069 (9)
N10.0351 (11)0.0414 (12)0.0407 (11)0.0034 (9)0.0014 (9)0.0023 (9)
C10.143 (4)0.044 (2)0.120 (4)0.011 (2)0.070 (3)0.003 (2)
C20.150 (4)0.059 (2)0.088 (3)0.012 (2)0.074 (3)0.002 (2)
C30.080 (3)0.067 (2)0.110 (3)0.024 (2)0.058 (2)0.031 (2)
C40.063 (2)0.089 (3)0.092 (3)0.021 (2)0.022 (2)0.033 (2)
C50.102 (3)0.076 (2)0.091 (3)0.020 (2)0.050 (2)0.039 (2)
C60.0298 (13)0.0498 (16)0.0499 (15)0.0026 (11)0.0069 (11)0.0015 (12)
C70.0532 (18)0.068 (2)0.0575 (17)0.0024 (15)0.0282 (14)0.0088 (14)
C80.0517 (19)0.085 (2)0.084 (2)0.0068 (17)0.0393 (19)0.0064 (18)
C90.0382 (17)0.090 (3)0.089 (3)0.0194 (17)0.0033 (18)0.013 (2)
C100.0414 (16)0.071 (2)0.0606 (18)0.0121 (15)0.0037 (14)0.0132 (16)
C110.0315 (13)0.0380 (13)0.0413 (13)0.0045 (10)0.0060 (11)0.0036 (10)
C120.0370 (14)0.0419 (14)0.0375 (13)0.0012 (11)0.0019 (11)0.0020 (10)
C130.0405 (15)0.0439 (15)0.0489 (15)0.0084 (12)0.0003 (12)0.0034 (12)
C140.0488 (16)0.0385 (14)0.0525 (15)0.0045 (12)0.0097 (13)0.0019 (11)
C150.0464 (16)0.0372 (14)0.0450 (14)0.0056 (12)0.0067 (12)0.0005 (11)
C160.063 (2)0.0625 (19)0.0502 (17)0.0023 (16)0.0019 (15)0.0102 (14)
Geometric parameters (Å, º) top
Fe1—C82.024 (3)C6—C71.426 (4)
Fe1—C92.025 (3)C6—C101.433 (4)
Fe1—C72.029 (3)C6—C111.473 (4)
Fe1—C22.032 (4)C7—C81.421 (4)
Fe1—C42.036 (3)C7—H70.9800
Fe1—C12.036 (4)C8—C91.401 (5)
Fe1—C52.038 (4)C8—H80.9800
Fe1—C102.040 (3)C9—C101.421 (5)
Fe1—C32.041 (4)C9—H90.9800
Fe1—C62.061 (3)C10—H100.9800
O1—C121.358 (3)C11—C121.408 (3)
O1—H10.8200C12—C131.381 (4)
N1—C151.339 (3)C13—C141.374 (4)
N1—C111.357 (3)C13—H130.9300
C1—C51.377 (6)C14—C151.385 (4)
C1—C21.412 (5)C14—H140.9300
C1—H1A0.9800C15—C161.509 (4)
C2—C31.381 (6)C16—H16A0.9600
C2—H20.9800C16—H16B0.9600
C3—C41.408 (5)C16—H16C0.9600
C3—H30.9800C16—H16D0.9600
C4—C51.425 (6)C16—H16E0.9600
C4—H40.9800C16—H16F0.9600
C5—H50.9800
C8—Fe1—C940.49 (16)C1—C5—Fe170.2 (2)
C8—Fe1—C741.06 (13)C4—C5—Fe169.5 (2)
C9—Fe1—C768.66 (15)C1—C5—H5126.2
C8—Fe1—C2155.18 (17)C4—C5—H5126.2
C9—Fe1—C2121.4 (2)Fe1—C5—H5126.2
C7—Fe1—C2163.08 (15)C7—C6—C10106.6 (3)
C8—Fe1—C4124.23 (16)C7—C6—C11128.5 (2)
C9—Fe1—C4160.47 (16)C10—C6—C11124.9 (3)
C7—Fe1—C4107.62 (16)C7—C6—Fe168.41 (17)
C2—Fe1—C467.60 (19)C10—C6—Fe168.77 (17)
C8—Fe1—C1119.26 (17)C11—C6—Fe1127.50 (18)
C9—Fe1—C1107.08 (18)C8—C7—C6108.5 (3)
C7—Fe1—C1154.37 (15)C8—C7—Fe169.29 (19)
C2—Fe1—C140.61 (16)C6—C7—Fe170.80 (16)
C4—Fe1—C167.5 (2)C8—C7—H7125.7
C8—Fe1—C5105.90 (16)C6—C7—H7125.7
C9—Fe1—C5123.03 (16)Fe1—C7—H7125.7
C7—Fe1—C5120.16 (16)C9—C8—C7108.2 (3)
C2—Fe1—C567.68 (17)C9—C8—Fe169.8 (2)
C4—Fe1—C540.93 (16)C7—C8—Fe169.66 (17)
C1—Fe1—C539.52 (16)C9—C8—H8125.9
C8—Fe1—C1068.53 (15)C7—C8—H8125.9
C9—Fe1—C1040.92 (14)Fe1—C8—H8125.9
C7—Fe1—C1068.58 (14)C8—C9—C10108.3 (3)
C2—Fe1—C10109.16 (17)C8—C9—Fe169.71 (19)
C4—Fe1—C10157.32 (14)C10—C9—Fe170.09 (18)
C1—Fe1—C10125.72 (18)C8—C9—H9125.8
C5—Fe1—C10160.69 (16)C10—C9—H9125.8
C8—Fe1—C3162.32 (18)Fe1—C9—H9125.8
C9—Fe1—C3156.78 (18)C9—C10—C6108.3 (3)
C7—Fe1—C3126.37 (16)C9—C10—Fe168.99 (19)
C2—Fe1—C339.63 (17)C6—C10—Fe170.33 (16)
C4—Fe1—C340.41 (15)C9—C10—H10125.9
C1—Fe1—C367.29 (18)C6—C10—H10125.9
C5—Fe1—C367.95 (15)Fe1—C10—H10125.9
C10—Fe1—C3122.69 (14)N1—C11—C12120.2 (2)
C8—Fe1—C668.91 (13)N1—C11—C6116.3 (2)
C9—Fe1—C668.94 (13)C12—C11—C6123.5 (2)
C7—Fe1—C640.79 (11)O1—C12—C13122.3 (2)
C2—Fe1—C6126.58 (13)O1—C12—C11118.9 (2)
C4—Fe1—C6121.60 (15)C13—C12—C11118.8 (2)
C1—Fe1—C6163.36 (16)C14—C13—C12119.9 (2)
C5—Fe1—C6156.22 (16)C14—C13—H13120.0
C10—Fe1—C640.90 (11)C12—C13—H13120.0
C3—Fe1—C6109.62 (13)C13—C14—C15119.4 (3)
C12—O1—H1109.5C13—C14—H14120.3
C15—N1—C11120.4 (2)C15—C14—H14120.3
C5—C1—C2108.7 (4)N1—C15—C14121.3 (2)
C5—C1—Fe170.3 (2)N1—C15—C16118.0 (2)
C2—C1—Fe169.5 (2)C14—C15—C16120.7 (3)
C5—C1—H1A125.7C15—C16—H16A109.5
C2—C1—H1A125.7C15—C16—H16B109.5
Fe1—C1—H1A125.7H16A—C16—H16B109.5
C3—C2—C1108.0 (4)C15—C16—H16C109.5
C3—C2—Fe170.5 (2)H16A—C16—H16C109.5
C1—C2—Fe169.9 (2)H16B—C16—H16C109.5
C3—C2—H2126.0C15—C16—H16D109.5
C1—C2—H2126.0H16A—C16—H16D141.1
Fe1—C2—H2126.0H16B—C16—H16D56.3
C2—C3—C4108.5 (4)H16C—C16—H16D56.3
C2—C3—Fe169.8 (2)C15—C16—H16E109.5
C4—C3—Fe169.6 (2)H16A—C16—H16E56.3
C2—C3—H3125.8H16B—C16—H16E141.1
C4—C3—H3125.8H16C—C16—H16E56.3
Fe1—C3—H3125.8H16D—C16—H16E109.5
C3—C4—C5107.2 (4)C15—C16—H16F109.5
C3—C4—Fe170.0 (2)H16A—C16—H16F56.3
C5—C4—Fe169.6 (2)H16B—C16—H16F56.3
C3—C4—H4126.4H16C—C16—H16F141.1
C5—C4—H4126.4H16D—C16—H16F109.5
Fe1—C4—H4126.4H16E—C16—H16F109.5
C1—C5—C4107.7 (3)
C8—Fe1—C1—C579.3 (3)C8—Fe1—C6—C11160.5 (3)
C9—Fe1—C1—C5121.6 (3)C9—Fe1—C6—C11155.9 (3)
C7—Fe1—C1—C545.4 (5)C7—Fe1—C6—C11122.7 (3)
C2—Fe1—C1—C5119.8 (4)C2—Fe1—C6—C1141.8 (3)
C4—Fe1—C1—C538.5 (2)C4—Fe1—C6—C1142.4 (3)
C10—Fe1—C1—C5162.7 (2)C1—Fe1—C6—C1176.9 (6)
C3—Fe1—C1—C582.4 (3)C5—Fe1—C6—C1179.0 (4)
C6—Fe1—C1—C5165.0 (4)C10—Fe1—C6—C11118.3 (3)
C8—Fe1—C1—C2160.9 (3)C3—Fe1—C6—C110.7 (3)
C9—Fe1—C1—C2118.6 (3)C10—C6—C7—C80.8 (3)
C7—Fe1—C1—C2165.3 (3)C11—C6—C7—C8179.3 (3)
C4—Fe1—C1—C281.3 (3)Fe1—C6—C7—C859.2 (2)
C5—Fe1—C1—C2119.8 (4)C10—C6—C7—Fe158.4 (2)
C10—Fe1—C1—C277.4 (3)C11—C6—C7—Fe1121.5 (3)
C3—Fe1—C1—C237.4 (3)C9—Fe1—C7—C837.4 (2)
C6—Fe1—C1—C245.2 (7)C2—Fe1—C7—C8167.0 (5)
C5—C1—C2—C30.9 (5)C4—Fe1—C7—C8122.3 (2)
Fe1—C1—C2—C360.5 (3)C1—Fe1—C7—C847.7 (5)
C5—C1—C2—Fe159.6 (3)C5—Fe1—C7—C879.3 (3)
C8—Fe1—C2—C3161.4 (3)C10—Fe1—C7—C881.5 (2)
C9—Fe1—C2—C3162.0 (2)C3—Fe1—C7—C8163.0 (2)
C7—Fe1—C2—C339.2 (6)C6—Fe1—C7—C8119.5 (3)
C4—Fe1—C2—C337.5 (2)C8—Fe1—C7—C6119.5 (3)
C1—Fe1—C2—C3118.6 (4)C9—Fe1—C7—C682.08 (19)
C5—Fe1—C2—C381.9 (3)C2—Fe1—C7—C647.5 (6)
C10—Fe1—C2—C3118.5 (2)C4—Fe1—C7—C6118.27 (18)
C6—Fe1—C2—C376.1 (3)C1—Fe1—C7—C6167.2 (4)
C8—Fe1—C2—C142.8 (5)C5—Fe1—C7—C6161.19 (19)
C9—Fe1—C2—C179.4 (3)C10—Fe1—C7—C637.99 (17)
C7—Fe1—C2—C1157.8 (5)C3—Fe1—C7—C677.6 (2)
C4—Fe1—C2—C181.1 (3)C6—C7—C8—C90.8 (4)
C5—Fe1—C2—C136.6 (3)Fe1—C7—C8—C959.4 (3)
C10—Fe1—C2—C1123.0 (3)C6—C7—C8—Fe160.1 (2)
C3—Fe1—C2—C1118.6 (4)C7—Fe1—C8—C9119.4 (3)
C6—Fe1—C2—C1165.4 (3)C2—Fe1—C8—C951.6 (5)
C1—C2—C3—C41.0 (5)C4—Fe1—C8—C9163.5 (2)
Fe1—C2—C3—C459.1 (3)C1—Fe1—C8—C982.1 (3)
C1—C2—C3—Fe160.1 (3)C5—Fe1—C8—C9122.6 (2)
C8—Fe1—C3—C2153.9 (4)C10—Fe1—C8—C937.8 (2)
C9—Fe1—C3—C242.0 (5)C3—Fe1—C8—C9170.4 (4)
C7—Fe1—C3—C2166.8 (2)C6—Fe1—C8—C981.9 (2)
C4—Fe1—C3—C2119.8 (3)C9—Fe1—C8—C7119.4 (3)
C1—Fe1—C3—C238.3 (2)C2—Fe1—C8—C7171.0 (3)
C5—Fe1—C3—C281.2 (3)C4—Fe1—C8—C777.1 (3)
C10—Fe1—C3—C280.6 (3)C1—Fe1—C8—C7158.5 (2)
C6—Fe1—C3—C2124.2 (2)C5—Fe1—C8—C7117.9 (2)
C8—Fe1—C3—C434.1 (6)C10—Fe1—C8—C781.6 (2)
C9—Fe1—C3—C4161.8 (4)C3—Fe1—C8—C751.0 (6)
C7—Fe1—C3—C473.4 (3)C6—Fe1—C8—C737.56 (19)
C2—Fe1—C3—C4119.8 (3)C7—C8—C9—C100.4 (4)
C1—Fe1—C3—C481.5 (3)Fe1—C8—C9—C1059.7 (3)
C5—Fe1—C3—C438.6 (3)C7—C8—C9—Fe159.3 (2)
C10—Fe1—C3—C4159.6 (2)C7—Fe1—C9—C837.9 (2)
C6—Fe1—C3—C4116.1 (2)C2—Fe1—C9—C8157.3 (2)
C2—C3—C4—C50.7 (4)C4—Fe1—C9—C844.7 (6)
Fe1—C3—C4—C559.9 (3)C1—Fe1—C9—C8115.3 (2)
C2—C3—C4—Fe159.2 (3)C5—Fe1—C9—C875.0 (3)
C8—Fe1—C4—C3168.1 (2)C10—Fe1—C9—C8119.4 (3)
C9—Fe1—C4—C3158.4 (5)C3—Fe1—C9—C8172.7 (3)
C7—Fe1—C4—C3125.9 (3)C6—Fe1—C9—C881.8 (2)
C2—Fe1—C4—C336.8 (2)C8—Fe1—C9—C10119.4 (3)
C1—Fe1—C4—C380.9 (3)C7—Fe1—C9—C1081.5 (2)
C5—Fe1—C4—C3118.1 (4)C2—Fe1—C9—C1083.3 (3)
C10—Fe1—C4—C349.4 (5)C4—Fe1—C9—C10164.1 (5)
C6—Fe1—C4—C383.4 (3)C1—Fe1—C9—C10125.3 (2)
C8—Fe1—C4—C573.8 (3)C5—Fe1—C9—C10165.6 (2)
C9—Fe1—C4—C540.3 (6)C3—Fe1—C9—C1053.3 (5)
C7—Fe1—C4—C5116.0 (3)C6—Fe1—C9—C1037.6 (2)
C2—Fe1—C4—C581.3 (3)C8—C9—C10—C60.1 (4)
C1—Fe1—C4—C537.2 (2)Fe1—C9—C10—C659.6 (2)
C10—Fe1—C4—C5167.5 (4)C8—C9—C10—Fe159.4 (3)
C3—Fe1—C4—C5118.1 (4)C7—C6—C10—C90.6 (4)
C6—Fe1—C4—C5158.5 (2)C11—C6—C10—C9179.6 (3)
C2—C1—C5—C40.5 (5)Fe1—C6—C10—C958.7 (2)
Fe1—C1—C5—C459.6 (3)C7—C6—C10—Fe158.1 (2)
C2—C1—C5—Fe159.1 (3)C11—C6—C10—Fe1121.7 (3)
C3—C4—C5—C10.2 (5)C8—Fe1—C10—C937.4 (2)
Fe1—C4—C5—C160.0 (3)C7—Fe1—C10—C981.7 (2)
C3—C4—C5—Fe160.2 (2)C2—Fe1—C10—C9116.2 (3)
C8—Fe1—C5—C1117.0 (3)C4—Fe1—C10—C9166.2 (4)
C9—Fe1—C5—C176.2 (3)C1—Fe1—C10—C973.9 (3)
C7—Fe1—C5—C1159.1 (2)C5—Fe1—C10—C939.1 (6)
C2—Fe1—C5—C137.6 (3)C3—Fe1—C10—C9157.9 (3)
C4—Fe1—C5—C1118.7 (4)C6—Fe1—C10—C9119.6 (3)
C10—Fe1—C5—C146.7 (6)C8—Fe1—C10—C682.2 (2)
C3—Fe1—C5—C180.6 (3)C9—Fe1—C10—C6119.6 (3)
C6—Fe1—C5—C1169.4 (3)C7—Fe1—C10—C637.89 (17)
C8—Fe1—C5—C4124.4 (3)C2—Fe1—C10—C6124.2 (2)
C9—Fe1—C5—C4165.1 (2)C4—Fe1—C10—C646.6 (5)
C7—Fe1—C5—C482.2 (3)C1—Fe1—C10—C6166.5 (2)
C2—Fe1—C5—C481.1 (3)C5—Fe1—C10—C6158.7 (4)
C1—Fe1—C5—C4118.7 (4)C3—Fe1—C10—C682.4 (2)
C10—Fe1—C5—C4165.4 (4)C15—N1—C11—C123.4 (4)
C3—Fe1—C5—C438.1 (3)C15—N1—C11—C6175.6 (2)
C6—Fe1—C5—C450.7 (4)C7—C6—C11—N1160.0 (3)
C8—Fe1—C6—C737.80 (19)C10—C6—C11—N120.3 (4)
C9—Fe1—C6—C781.3 (2)Fe1—C6—C11—N1109.0 (2)
C2—Fe1—C6—C7164.5 (2)C7—C6—C11—C1221.1 (4)
C4—Fe1—C6—C780.3 (2)C10—C6—C11—C12158.7 (3)
C1—Fe1—C6—C7160.4 (5)Fe1—C6—C11—C1270.0 (3)
C5—Fe1—C6—C743.7 (4)N1—C11—C12—O1178.5 (2)
C10—Fe1—C6—C7118.9 (3)C6—C11—C12—O12.5 (4)
C3—Fe1—C6—C7123.4 (2)N1—C11—C12—C132.5 (4)
C8—Fe1—C6—C1081.1 (2)C6—C11—C12—C13176.4 (2)
C9—Fe1—C6—C1037.6 (2)O1—C12—C13—C14179.0 (3)
C7—Fe1—C6—C10118.9 (3)C11—C12—C13—C140.1 (4)
C2—Fe1—C6—C1076.6 (3)C12—C13—C14—C151.4 (4)
C4—Fe1—C6—C10160.8 (2)C11—N1—C15—C141.9 (4)
C1—Fe1—C6—C1041.5 (6)C11—N1—C15—C16176.7 (2)
C5—Fe1—C6—C10162.7 (3)C13—C14—C15—N10.5 (4)
C3—Fe1—C6—C10117.7 (2)C13—C14—C15—C16179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.962.774 (3)169
C7—H7···O10.982.392.866 (4)109
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C11H10NO)]
Mr293.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)10.4370 (13), 12.7196 (15), 10.5424 (13)
β (°) 111.033 (1)
V3)1306.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.37 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.675, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
7569, 2422, 1970
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.09
No. of reflections2422
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.54

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.962.774 (3)169
C7—H7···O10.982.392.866 (4)109
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Luoyang Normal University.

References

First citationBeletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637-639, 653–663.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHayashi, T. & Togni, A. (1995). Editors. Ferrocenes VCH: Weinhein: VCH.  Google Scholar
First citationKealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039–1040.  CrossRef CAS Web of Science Google Scholar
First citationSarhan, A. A. O. & Izumi, T. (2003). J. Organomet. Chem. 675, 1–12.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5985.  Web of Science PubMed Google Scholar
First citationXu, C., Gong, J. F. & Wu, Y. J. (2007). Tetrahedron Lett. 48, 1619–1623.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds