organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di-4-pyridylpropane–4,4′-oxy­di­benzoic acid (1/1)

aDepartment of International Development Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: HirofumiHinode@yahoo.com

(Received 2 September 2008; accepted 14 October 2008; online 8 November 2008)

The hydro­thermal reaction of Cd(NO3)2·4H2O, 1,3-di-4-pyridylpropane (BPP) and 4,4′-oxydibenzoic acid (OBA) led to the formation of the title compound, C13H14N2·C14H10O5. The asymmetric unit consists of one mol­ecule of OBA and one of BPP. In the OBA mol­ecule, one COOH group is nearly planar with its attached benzene ring [dihedral angle = 0.9 (1)°], while the other COOH group is slightly twisted with a dihedral angle of 10.8 (3)°. The carboxyl groups form strong inter­molecular O—H⋯N hydrogen bonds with N atoms of the pyridine rings in BPP, linking the mol­ecules into zigzag chains.

Related literature

For general background see: Belcher et al. (2002[Belcher, W. J., Longstaff, C. A., Neckenig, M. R. & Steed, J. W. (2002). Chem. Commun. pp. 1602-1603.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Han et al. (2007[Han, L., Valle, H. & Bu, X. H. (2007). Inorg. Chem. 46, 1511-1513.]); Luan et al. (2005[Luan, X. J., Wang, Y. Y., Li, D. S., Liu, P., Hu, H. M., Shi, Q. Z. & Peng, S. M. (2005). Angew. Chem. Int. Ed. 44, 3864-3867.]); Nguyen et al. (2006[Nguyen, D. T., Chew, E., Zhang, Q. C., Choi, A. & Bu, X. H. (2006). Inorg. Chem. 45, 10722-10727.]); Wang et al. (2005[Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Su, Z. M. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824-5827.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For related structures, see: Dai et al. (2005[Dai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410-o3411.]); Ma et al. (2006[Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-o1166.]); Hou et al. (2008[Hou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997.]); Lee et al. (2003[Lee, T. W., Lau, J. P. K. & Szeto, L. (2003). Acta Cryst. E59, o792-o793.]); Wang et al. (2008[Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, o1442.]); Najafpour et al. (2008[Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.]). For an idependent determination of this structure, see: Dong et al. (2008[Dong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, o2252.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2·C14H10O5

  • Mr = 456.48

  • Triclinic, [P \overline 1]

  • a = 6.8938 (3) Å

  • b = 11.5869 (6) Å

  • c = 14.9570 (9) Å

  • α = 86.493 (4)°

  • β = 81.157 (4)°

  • γ = 74.016 (3)°

  • V = 1134.67 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.47 × 0.45 × 0.45 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.962

  • 8404 measured reflections

  • 5645 independent reflections

  • 2932 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.147

  • S = 1.01

  • 5645 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 1.78 2.598 (2) 174
O5—H5⋯N2ii 0.82 1.87 2.685 (2) 177
Symmetry codes: (i) x+1, y, z; (ii) x-1, y-1, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXS97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the past decades, the rational design and synthesis of metal-organic frameworks have received extensive attention in the fields of supramolecular chemistry and crystal engineering (Hagrman et al., 1999; Yaghi et al., 1998). These materials exhibit interesting functions such as catalysis, biology, electrical conductivity, magnetism and photochemistry. In the past five years, there has been a growing interest in metal-organic frameworks based on 1,3-di-4-pyridylpropane and 4,4'-oxydibenzoic acid ligands (Wang et al., 2005; Luan et al., 2005; Belcher et al., 2002; Han et al., 2007; Nguyen et al., 2006). Recently, we have focused on preparing metal-organic frameworks containing such organic ligands and metal ions. During the process, a new cocrystal of 1,3-di-4-pyridylpropane and 4,4'-oxydibenzoic acid was obtained which assembled by H-bondin and we report its synthesis and crystal structure here. The structures of some similar molecular materials have been reported (Dai et al., 2005; Lee et al., 2003; Ma et al., 2006; Wang et al., 2008; Hou et al., 2008; Najafpour et al., 2008). An independent study of (I) has also been published (Dong et al., 2008).

As shown in Fig. 1, the asymmetric unit contains one 1,3-di-4-pyridylpropane molecule and one 4,4'-oxydibenzoic acid molecule. The bond lengths and angles are within normal ranges. In 4,4'-oxydibenzoic acid molecule, one COOH group (C7/O2/O3) is nearly planar with one benzene ring (C1/C2/C3/C4/C5/C6, dihedral angle of 0.9 °), while another COOH group (C14/O4/O5) has a dihedral angle of 10.8 ° with another benzene ring (C8/C9/C10/C11/C12/C13). The dihedral angle between two benzene ring of a 4,4'-oxydibenzoic acid molecule is 57.0 °. In 1,3-di-4-pyridylpropane molecule, the dihedral angle between two pyridyl rings is 26.9 °. The carboxylic acid groups form strong intermolecular O—H···N hydrogen bonds (Table 1) with N atoms of the pyriding rings, linking the molecules into one-dimensional zigzag chains (Fig.2). Intermolecular C—H···O hydrogen bonds may be effective in the stabilization of the crystal structure.

Related literature top

For general background see: Belcher et al. (2002); Hagrman et al. (1999); Han et al. (2007); Luan et al. (2005); Nguyen et al. (2006); Wang et al. (2005); Yaghi et al. (1998). For related structures, see: Dai et al. (2005); Ma et al. (2006); Hou et al. (2008); Lee et al. (2003); Wang et al. (2008); Najafpour et al. (2008). For an idependent determination of this structure, see: Dong et al. (2008).

Experimental top

In a typical synthesis for the title compound, a mixture of Cd(NO3)2.4H2O 120 mg, 4,4'-oxydibenzoic acid 52 mg, 1,3-bis(4-pyridyl)propane 20 mg, HCl (38%) 0.1 ml, NH3.H2O 0.08 ml, N,N-dimethylformamide (DMF) 3.0 ml and H2O 6.0 ml were sealed in a 15 ml Teflon-lined stainless steel autoclave and heated under autogenous pressure for five days at 393 K. After slow cooling to room temperature, the block-shaped colourless crystalline product was filtered, washed with distilled water, and dried at ambient temperature. The crystal used for data collection was obtained directly from the sample that was washed and dried without further re-crystallization.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C). The H atoms on oxygen atoms of carboxylic acid groups were found in a difference map and refined with a riding model with O—H = 0.82 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXS97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A one-dimensional zigzag chain formed by intermolecular O—H···N hydrogen bonds. (Hydrogen bonds are indicated by dashed lines)
1,3-Di-4-pyridylpropane–4,4'-oxydibenzoic acid (1/1) top
Crystal data top
C13H14N2·C14H10O5Z = 2
Mr = 456.48F(000) = 480
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P1Melting point: not measured K
a = 6.8938 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5869 (6) ÅCell parameters from 5645 reflections
c = 14.9570 (9) Åθ = 1.8–28.4°
α = 86.493 (4)°µ = 0.09 mm1
β = 81.157 (4)°T = 298 K
γ = 74.016 (3)°Block, colourless
V = 1134.67 (10) Å30.47 × 0.45 × 0.45 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5645 independent reflections
Radiation source: fine-focus sealed tube2932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 9.00cm pixels mm-1θmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1415
Tmin = 0.957, Tmax = 0.962l = 1916
8404 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0668P]
where P = (Fo2 + 2Fc2)/3
5645 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H14N2·C14H10O5γ = 74.016 (3)°
Mr = 456.48V = 1134.67 (10) Å3
Triclinic, P1Z = 2
a = 6.8938 (3) ÅMo Kα radiation
b = 11.5869 (6) ŵ = 0.09 mm1
c = 14.9570 (9) ÅT = 298 K
α = 86.493 (4)°0.47 × 0.45 × 0.45 mm
β = 81.157 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2932 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.962Rint = 0.022
8404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
5645 reflectionsΔρmin = 0.28 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1086 (2)0.38623 (14)0.57527 (11)0.0497 (4)
N20.6799 (2)0.69499 (14)0.97352 (11)0.0497 (4)
C150.0705 (3)0.38146 (18)0.59963 (16)0.0580 (6)
H150.18000.31560.58270.080*
C160.1014 (3)0.46960 (19)0.64881 (16)0.0571 (6)
H160.23010.46230.66400.080*
C170.0570 (3)0.56910 (16)0.67593 (13)0.0427 (5)
C180.2430 (3)0.57321 (17)0.64994 (14)0.0488 (5)
H180.35530.63790.66620.080*
C190.2627 (3)0.48237 (19)0.60034 (15)0.0527 (5)
H190.38930.48790.58340.080*
C200.0312 (3)0.67052 (17)0.72756 (14)0.0508 (5)
H20A0.15310.69900.77090.080*
H20B0.02050.73620.68540.080*
C210.1517 (3)0.63922 (18)0.77781 (15)0.0541 (5)
H21A0.14160.57430.82090.080*
H21B0.27470.61120.73500.080*
C220.1678 (3)0.74500 (17)0.82751 (15)0.0538 (5)
H22A0.04540.77080.87100.080*
H22B0.17030.81060.78420.080*
C230.6401 (3)0.60151 (18)0.93963 (15)0.0564 (6)
H230.72500.52520.94830.080*
C240.4788 (3)0.61262 (17)0.89228 (15)0.0539 (6)
H240.45660.54450.87050.080*
C250.3504 (3)0.72434 (17)0.87710 (13)0.0437 (5)
C260.3944 (3)0.82112 (17)0.91119 (15)0.0504 (5)
H260.31400.89860.90220.080*
C270.5568 (3)0.80294 (18)0.95832 (15)0.0528 (5)
H270.58210.86960.98080.080*
O10.6084 (2)0.16655 (12)0.27513 (10)0.0580 (4)
O20.5302 (2)0.29158 (14)0.50942 (13)0.0798 (6)
O30.8616 (2)0.20798 (13)0.48596 (12)0.0716 (5)
H30.86310.26420.51630.080*
O40.1236 (2)0.11337 (12)0.04949 (11)0.0666 (5)
O50.0307 (2)0.31076 (12)0.07640 (11)0.0603 (4)
H50.12190.30940.04670.080*
C10.6118 (3)0.06807 (16)0.32224 (13)0.0440 (5)
C20.4410 (3)0.01727 (18)0.35955 (14)0.0496 (5)
H20.31200.01370.35100.080*
C30.4625 (3)0.10781 (17)0.40961 (14)0.0477 (5)
H3A0.34710.16550.43460.080*
C40.6537 (3)0.11418 (16)0.42333 (13)0.0412 (4)
C50.8235 (3)0.02569 (18)0.38713 (14)0.0487 (5)
H5A0.95240.02750.39720.080*
C60.8041 (3)0.06484 (17)0.33646 (14)0.0500 (5)
H60.91900.12320.31200.080*
C70.6739 (3)0.21355 (17)0.47726 (14)0.0481 (5)
C80.4451 (3)0.16717 (17)0.23154 (13)0.0454 (5)
C90.3450 (3)0.07097 (17)0.18192 (14)0.0519 (5)
H90.37820.00180.18020.080*
C100.1958 (3)0.08367 (16)0.13509 (14)0.0486 (5)
H100.12770.01880.10190.080*
C110.1450 (3)0.19174 (16)0.13651 (13)0.0408 (4)
C120.2458 (3)0.28742 (16)0.18693 (14)0.0481 (5)
H120.21260.36020.18890.080*
C130.3958 (3)0.27513 (17)0.23433 (15)0.0513 (5)
H130.46350.33960.26810.080*
C140.0170 (3)0.20004 (17)0.08383 (13)0.0442 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0480 (10)0.0533 (10)0.0517 (11)0.0151 (8)0.0135 (8)0.0097 (8)
N20.0498 (10)0.0505 (10)0.0547 (11)0.0163 (8)0.0186 (8)0.0058 (8)
C150.0486 (12)0.0560 (13)0.0700 (16)0.0095 (10)0.0119 (11)0.0195 (11)
C160.0407 (11)0.0625 (13)0.0725 (15)0.0109 (10)0.0191 (10)0.0214 (11)
C170.0419 (10)0.0467 (11)0.0425 (11)0.0126 (9)0.0128 (9)0.0054 (8)
C180.0422 (11)0.0497 (11)0.0563 (13)0.0094 (9)0.0166 (10)0.0059 (9)
C190.0462 (11)0.0579 (13)0.0600 (14)0.0157 (10)0.0210 (10)0.0052 (10)
C200.0483 (11)0.0509 (12)0.0578 (13)0.0129 (9)0.0184 (10)0.0124 (10)
C210.0516 (12)0.0544 (12)0.0625 (14)0.0151 (10)0.0207 (10)0.0132 (10)
C220.0558 (12)0.0519 (12)0.0594 (14)0.0136 (10)0.0236 (10)0.0101 (10)
C230.0604 (13)0.0476 (12)0.0682 (15)0.0155 (10)0.0284 (11)0.0020 (10)
C240.0617 (13)0.0434 (11)0.0655 (15)0.0189 (10)0.0251 (11)0.0083 (10)
C250.0470 (11)0.0456 (11)0.0423 (11)0.0156 (9)0.0111 (9)0.0052 (8)
C260.0489 (11)0.0431 (11)0.0625 (14)0.0116 (9)0.0165 (10)0.0099 (9)
C270.0516 (12)0.0496 (12)0.0635 (14)0.0171 (10)0.0155 (10)0.0157 (10)
O10.0535 (8)0.0512 (8)0.0755 (11)0.0093 (6)0.0305 (7)0.0179 (7)
O20.0523 (9)0.0721 (11)0.1135 (15)0.0026 (8)0.0246 (9)0.0481 (10)
O30.0488 (9)0.0740 (10)0.0991 (13)0.0148 (7)0.0181 (8)0.0448 (9)
O40.0742 (10)0.0471 (8)0.0893 (12)0.0147 (7)0.0498 (9)0.0038 (8)
O50.0661 (9)0.0437 (8)0.0821 (11)0.0164 (7)0.0396 (8)0.0061 (7)
C10.0472 (11)0.0451 (11)0.0449 (12)0.0148 (9)0.0160 (9)0.0064 (8)
C20.0375 (10)0.0591 (12)0.0571 (13)0.0141 (9)0.0171 (9)0.0078 (10)
C30.0368 (10)0.0536 (12)0.0527 (13)0.0070 (9)0.0124 (9)0.0098 (9)
C40.0405 (10)0.0450 (10)0.0398 (11)0.0110 (8)0.0104 (8)0.0057 (8)
C50.0359 (10)0.0578 (12)0.0559 (13)0.0147 (9)0.0084 (9)0.0147 (10)
C60.0392 (10)0.0552 (12)0.0563 (13)0.0104 (9)0.0074 (9)0.0156 (10)
C70.0460 (11)0.0496 (12)0.0513 (13)0.0100 (10)0.0171 (10)0.0086 (9)
C80.0463 (11)0.0472 (11)0.0471 (12)0.0127 (9)0.0166 (9)0.0089 (9)
C90.0659 (13)0.0433 (11)0.0557 (13)0.0234 (10)0.0220 (11)0.0014 (9)
C100.0596 (12)0.0423 (11)0.0493 (12)0.0155 (9)0.0212 (10)0.0001 (9)
C110.0438 (10)0.0393 (10)0.0418 (11)0.0115 (8)0.0109 (9)0.0059 (8)
C120.0533 (11)0.0383 (10)0.0581 (13)0.0142 (9)0.0199 (10)0.0021 (9)
C130.0551 (12)0.0412 (11)0.0613 (14)0.0104 (9)0.0256 (10)0.0009 (9)
C140.0453 (11)0.0411 (11)0.0484 (12)0.0112 (9)0.0118 (9)0.0071 (9)
Geometric parameters (Å, º) top
N1—C151.326 (2)O1—C11.385 (2)
N1—C191.337 (2)O1—C81.387 (2)
N2—C271.333 (2)O2—C71.202 (2)
N2—C231.334 (2)O3—C71.304 (2)
C15—C161.375 (3)O3—H30.8200
C15—H150.9300O4—C141.208 (2)
C16—C171.383 (3)O5—C141.325 (2)
C16—H160.9300O5—H50.8200
C17—C181.384 (2)C1—C21.379 (3)
C17—C201.509 (2)C1—C61.385 (2)
C18—C191.372 (3)C2—C31.378 (3)
C18—H180.9300C2—H20.9300
C19—H190.9300C3—C41.387 (2)
C20—C211.514 (3)C3—H3A0.9300
C20—H20A0.9700C4—C51.388 (2)
C20—H20B0.9700C4—C71.494 (2)
C21—C221.510 (3)C5—C61.378 (2)
C21—H21A0.9700C5—H5A0.9300
C21—H21B0.9700C6—H60.9300
C22—C251.514 (3)C8—C91.379 (3)
C22—H22A0.9700C8—C131.380 (3)
C22—H22B0.9700C9—C101.374 (3)
C23—C241.381 (3)C9—H90.9300
C23—H230.9300C10—C111.388 (2)
C24—C251.380 (3)C10—H100.9300
C24—H240.9300C11—C121.384 (3)
C25—C261.384 (2)C11—C141.489 (2)
C26—C271.374 (3)C12—C131.382 (3)
C26—H260.9300C12—H120.9300
C27—H270.9300C13—H130.9300
C15—N1—C19117.07 (16)N2—C27—H27118.2
C27—N2—C23116.59 (16)C26—C27—H27118.2
N1—C15—C16122.91 (18)C1—O1—C8122.02 (14)
N1—C15—H15118.5C7—O3—H3109.5
C16—C15—H15118.5C14—O5—H5109.5
C15—C16—C17120.72 (17)C2—C1—C6120.44 (16)
C15—C16—H16119.6C2—C1—O1124.67 (16)
C17—C16—H16119.6C6—C1—O1114.70 (16)
C16—C17—C18115.85 (17)C3—C2—C1119.62 (17)
C16—C17—C20123.19 (16)C3—C2—H2120.2
C18—C17—C20120.92 (16)C1—C2—H2120.2
C19—C18—C17120.35 (17)C2—C3—C4120.95 (17)
C19—C18—H18119.8C2—C3—H3A119.5
C17—C18—H18119.8C4—C3—H3A119.5
N1—C19—C18123.10 (17)C3—C4—C5118.54 (16)
N1—C19—H19118.4C3—C4—C7120.15 (16)
C18—C19—H19118.4C5—C4—C7121.30 (16)
C17—C20—C21115.27 (16)C6—C5—C4121.02 (16)
C17—C20—H20A108.5C6—C5—H5A119.5
C21—C20—H20A108.5C4—C5—H5A119.5
C17—C20—H20B108.5C5—C6—C1119.39 (17)
C21—C20—H20B108.5C5—C6—H6120.3
H20A—C20—H20B107.5C1—C6—H6120.3
C22—C21—C20112.25 (16)O2—C7—O3123.16 (17)
C22—C21—H21A109.2O2—C7—C4122.99 (17)
C20—C21—H21A109.2O3—C7—C4113.85 (16)
C22—C21—H21B109.2C9—C8—C13120.40 (17)
C20—C21—H21B109.2C9—C8—O1123.73 (17)
H21A—C21—H21B107.9C13—C8—O1115.68 (17)
C21—C22—C25116.41 (17)C10—C9—C8119.34 (17)
C21—C22—H22A108.2C10—C9—H9120.3
C25—C22—H22A108.2C8—C9—H9120.3
C21—C22—H22B108.2C9—C10—C11121.15 (18)
C25—C22—H22B108.2C9—C10—H10119.4
H22A—C22—H22B107.3C11—C10—H10119.4
N2—C23—C24123.12 (18)C12—C11—C10118.96 (17)
N2—C23—H23118.4C12—C11—C14122.47 (17)
C24—C23—H23118.4C10—C11—C14118.57 (17)
C25—C24—C23120.29 (17)C13—C12—C11120.16 (17)
C25—C24—H24119.9C13—C12—H12119.9
C23—C24—H24119.9C11—C12—H12119.9
C24—C25—C26116.32 (17)C8—C13—C12119.99 (18)
C24—C25—C22124.00 (16)C8—C13—H13120.0
C26—C25—C22119.67 (17)C12—C13—H13120.0
C27—C26—C25120.08 (18)O4—C14—O5123.14 (17)
C27—C26—H26120.0O4—C14—C11122.70 (17)
C25—C26—H26120.0O5—C14—C11114.15 (16)
N2—C27—C26123.58 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.782.598 (2)174.0
O5—H5···N2ii0.821.872.685 (2)176.9
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z1.

Experimental details

Crystal data
Chemical formulaC13H14N2·C14H10O5
Mr456.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.8938 (3), 11.5869 (6), 14.9570 (9)
α, β, γ (°)86.493 (4), 81.157 (4), 74.016 (3)
V3)1134.67 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.45 × 0.45
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.957, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
8404, 5645, 2932
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.01
No. of reflections5645
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.782.598 (2)174.0
O5—H5···N2ii0.821.872.685 (2)176.9
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z1.
 

Acknowledgements

The authors thank Tokyo Institute of Technology and MEXT for the financial support of this work.

References

First citationBelcher, W. J., Longstaff, C. A., Neckenig, M. R. & Steed, J. W. (2002). Chem. Commun. pp. 1602–1603.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410–o3411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, o2252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationHan, L., Valle, H. & Bu, X. H. (2007). Inorg. Chem. 46, 1511–1513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, T. W., Lau, J. P. K. & Szeto, L. (2003). Acta Cryst. E59, o792–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuan, X. J., Wang, Y. Y., Li, D. S., Liu, P., Hu, H. M., Shi, Q. Z. & Peng, S. M. (2005). Angew. Chem. Int. Ed. 44, 3864–3867.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNajafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, D. T., Chew, E., Zhang, Q. C., Choi, A. & Bu, X. H. (2006). Inorg. Chem. 45, 10722–10727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, o1442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B., Li, Y. G., Su, Z. M. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824–5827.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds