organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Ethyl 3-(4-chloro­phen­yl)-2-cyano-3-(2,6-di­fluoro­benzamido)acrylate

aDepartment of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China, and bSchool of Mathematics and Physics, Huangshi Institute of Tecnology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zhangdehua200@163.com

(Received 16 September 2008; accepted 24 October 2008; online 8 November 2008)

The title compound, C19H13ClF2N2O3, was prepared by the reaction of (Z)-ethyl 3-amino-3-(4-chloro­phen­yl)-2-cyano­acrylate and 2,6-difluoro­benzoyl chloride. The dihedral angle between the chloro­benzene and fluoro­benzene rings is 37.0 (1)°. The ethyl group is disordered over two positions [occupancies = 0.52 (2):0.48 (2)]. In addition to intra­molecular N—H⋯O and N—H⋯F hydrogen bonds, the crystal packing shows the mol­ecules to be connected by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

The title compound is useful as an inhibitor of Pyricularia oryzae, Rhizoctonia solani, Botrytis cinerea and Gibberella zeae, see: Heller et al. (2004[Heller, D., Drexler, H. J., You, J. & Zhang, S. L. (2004). WO Patent 011 414.]); Creagh & Hubbell (1992[Creagh, D. C. & Hubbell, J. H. (1992). International Tables for Crystallography, Vol. C, pp. 200-206. Dordrecht: Kluwer.]); Ibers & Hamilton (1964[Ibers, J. A. & Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13ClF2N2O3

  • Mr = 390.76

  • Triclinic, [P \overline 1]

  • a = 8.919 (5) Å

  • b = 9.7560 (6) Å

  • c = 11.2717 (7) Å

  • α = 91.9710 (10)°

  • β = 110.0940 (10)°

  • γ = 91.4490 (10)°

  • V = 919.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7196 measured reflections

  • 3556 independent reflections

  • 2524 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.10

  • 3556 reflections

  • 265 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.05 2.674 (2) 129
N1—H1⋯F1 0.86 2.36 2.827 (2) 115
C18—H18B⋯O1i 0.97 2.58 2.990 (7) 106
C10—H10⋯N2ii 0.93 2.62 3.302 (3) 131
C5—H5⋯N2iii 0.93 2.59 3.432 (3) 150
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z+1; (iii) x+1, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, 2-cyanoacrylates have been in widespread used as agrochemicals because of their unique mechanism of action and good environmental profiles. The title compound is useful as an inhibitor of Pyricularia oryzae, Rhizoctonia solani, Botrytis cinerea and Gibberella zeae (Heller et al., 2004; Creagh & Hubbell, 1992; Ibers & Hamilton, 1964).

In the title compound(Fig.1),all bond lengths and angles are unexceptional.The planar chlorobenzene ring is approximately perpendicular to the fluorobenzene ring with a dihedral angle of 37.0 (1)°. The ethyl group is disordered over two positions occupancies (0.52 (2):0.48 (2)).The molecular conformation is stabilized by C—H···O and N—H···O hydrogen bonds (Table 1). The crystal packing is governed by additional N—H···O and N—H···F Interactions (Fig. 2).

Related literature top

For background information see: Heller et al. (2004); Creagh & Hubbell (1992); Ibers & Hamilton (1964).

Experimental top

To a solution of (Z)-ethyl 3-amino-3-(4-chlorophenyl)-2-cyanoacrylate (1.25 g,0.0050 mol) in CH2Cl2(18 ml), 2,6-difluorobenzoyl chloride (2.65 g,0.015 mol) was added. Subsequently, Et3N(1.52 g,0.015 mol) waa dropped into the solution under stirring. Then, the reaction mixture was heated to reflux and stirred for 4 h and then cooled to room temperature. The reaction solution was filtered off and some white solid was separated. The organic phase was washed with water and then dried over Na2SO4. After removal of the solvent, a brown dope was obtained. After column chromatography using ethylacetate/light petroleum (1:6) as the eluent. Small single crystals were grown from a solution of ethyl acetate/petroleum ether(3:1) after 45 days,at room temperature.

Refinement top

Methyl H atoms were placed in calculated positions with C—H=0.96 Å and the torsion angle was refined to fit the electron density, with UUiso(H)=1.5UUeq(C). Other H atoms were placed in calculated positions with C—H =0.96 Å(methylene) and 0.93 Å(aromatic C—H), and refined in riding mode, with Uiso(H)=1.2Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis.
(Z)-Ethyl 3-(4-chlorophenyl)-2-cyano-3-(2,6-difluorobenzamido)acrylate top
Crystal data top
C19H13ClF2N2O3Z = 2
Mr = 390.76F(000) = 400
Triclinic, P1Dx = 1.411 Mg m3
a = 8.919 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7560 (6) ÅCell parameters from 2672 reflections
c = 11.2717 (7) Åθ = 2.4–26.8°
α = 91.971 (1)°µ = 0.25 mm1
β = 110.094 (1)°T = 298 K
γ = 91.449 (1)°Block, colorless
V = 919.9 (5) Å30.23 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2524 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ϕ and ω scansh = 109
7196 measured reflectionsk = 1212
3556 independent reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.0184P]
where P = (Fo2 + 2Fc2)/3
3556 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.22 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H13ClF2N2O3γ = 91.449 (1)°
Mr = 390.76V = 919.9 (5) Å3
Triclinic, P1Z = 2
a = 8.919 (5) ÅMo Kα radiation
b = 9.7560 (6) ŵ = 0.25 mm1
c = 11.2717 (7) ÅT = 298 K
α = 91.971 (1)°0.23 × 0.20 × 0.10 mm
β = 110.094 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2524 reflections with I > 2σ(I)
7196 measured reflectionsRint = 0.053
3556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
3556 reflectionsΔρmin = 0.31 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7937 (2)0.8595 (2)0.98955 (19)0.0535 (5)
C20.9102 (3)0.7653 (3)1.0005 (2)0.0732 (7)
C31.0531 (3)0.7682 (3)1.0992 (3)0.0838 (8)
H31.12910.70361.10240.101*
C41.0803 (3)0.8678 (3)1.1917 (3)0.0803 (8)
H41.17560.86991.26010.096*
C50.9711 (3)0.9653 (3)1.1869 (2)0.0751 (7)
H50.99111.03361.25060.090*
C60.8309 (3)0.9595 (2)1.0850 (2)0.0595 (6)
C70.6359 (3)0.8440 (2)0.8831 (2)0.0559 (5)
C80.4458 (2)0.97457 (19)0.71787 (19)0.0488 (5)
C90.3884 (2)0.85359 (19)0.62766 (19)0.0502 (5)
C100.2296 (3)0.8088 (2)0.5863 (2)0.0622 (6)
H100.15860.85210.61800.075*
C110.1759 (3)0.7012 (2)0.4989 (2)0.0750 (8)
H110.06950.67030.47250.090*
C120.2800 (4)0.6397 (2)0.4511 (2)0.0769 (8)
C130.4383 (3)0.6827 (2)0.4905 (2)0.0755 (7)
H130.50820.64000.45730.091*
C140.4923 (3)0.7894 (2)0.5793 (2)0.0621 (6)
H140.59940.81840.60690.074*
C150.3749 (2)1.09761 (19)0.6912 (2)0.0513 (5)
C160.2483 (2)1.1126 (2)0.5730 (2)0.0560 (5)
C170.4278 (3)1.2223 (2)0.7746 (2)0.0620 (6)
C180.3811 (12)1.4663 (7)0.7837 (10)0.068 (2)0.523 (18)
H18A0.35631.52870.71500.081*0.523 (18)
H18B0.49461.47460.83160.081*0.523 (18)
C190.2853 (15)1.4949 (11)0.8666 (11)0.092 (3)0.523 (18)
H19A0.17361.48750.81690.138*0.523 (18)
H19B0.31201.58600.90440.138*0.523 (18)
H19C0.30871.42960.93170.138*0.523 (18)
H18C0.39681.40290.91880.105*0.477 (18)
H18D0.46381.49400.83430.105*0.477 (18)
H19D0.19271.54230.71920.136*0.477 (18)
H19E0.26131.61030.85610.136*0.477 (18)
H19F0.14981.47760.82940.136*0.477 (18)
Cl10.21456 (12)0.50444 (8)0.33944 (8)0.1331 (5)
F10.72205 (17)1.05606 (16)1.07956 (13)0.0850 (5)
F20.8855 (2)0.66854 (19)0.90845 (19)0.1238 (7)
N10.57876 (19)0.96329 (16)0.82386 (16)0.0544 (5)
H10.63191.03820.85670.065*
N20.1517 (2)1.1285 (2)0.4780 (2)0.0741 (6)
O10.5673 (2)0.73410 (15)0.85157 (17)0.0825 (6)
O20.5482 (2)1.23045 (16)0.86745 (17)0.0837 (6)
O30.3324 (2)1.32363 (15)0.73535 (19)0.0887 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0522 (12)0.0567 (11)0.0446 (11)0.0027 (9)0.0076 (9)0.0076 (9)
C20.0721 (16)0.0698 (14)0.0661 (16)0.0128 (12)0.0083 (13)0.0047 (12)
C30.0652 (16)0.0906 (18)0.082 (2)0.0167 (13)0.0062 (15)0.0179 (16)
C40.0527 (14)0.111 (2)0.0633 (16)0.0062 (14)0.0010 (12)0.0252 (15)
C50.0707 (16)0.0961 (18)0.0465 (14)0.0138 (14)0.0067 (12)0.0015 (12)
C60.0531 (13)0.0744 (14)0.0479 (12)0.0006 (10)0.0138 (10)0.0029 (10)
C70.0562 (12)0.0551 (11)0.0467 (12)0.0040 (9)0.0056 (10)0.0024 (9)
C80.0412 (10)0.0534 (10)0.0477 (12)0.0037 (8)0.0106 (9)0.0004 (9)
C90.0500 (11)0.0491 (10)0.0445 (11)0.0017 (8)0.0076 (9)0.0003 (8)
C100.0521 (12)0.0533 (11)0.0711 (15)0.0009 (9)0.0098 (11)0.0098 (10)
C110.0645 (15)0.0569 (13)0.0773 (17)0.0016 (11)0.0080 (13)0.0112 (12)
C120.0947 (19)0.0522 (12)0.0568 (15)0.0208 (12)0.0091 (13)0.0072 (11)
C130.095 (2)0.0717 (15)0.0563 (15)0.0297 (14)0.0200 (14)0.0033 (12)
C140.0616 (14)0.0673 (13)0.0572 (14)0.0130 (11)0.0197 (11)0.0023 (11)
C150.0438 (11)0.0514 (11)0.0498 (12)0.0033 (8)0.0056 (9)0.0014 (9)
C160.0464 (12)0.0516 (11)0.0612 (14)0.0009 (9)0.0076 (11)0.0018 (10)
C170.0554 (13)0.0512 (11)0.0671 (15)0.0036 (10)0.0063 (12)0.0033 (10)
C180.084 (4)0.037 (3)0.067 (5)0.004 (3)0.007 (4)0.001 (3)
C190.102 (8)0.082 (6)0.082 (6)0.018 (5)0.022 (5)0.025 (5)
Cl10.1606 (9)0.0804 (5)0.0965 (6)0.0416 (5)0.0328 (6)0.0442 (4)
F10.0830 (10)0.0996 (10)0.0646 (9)0.0167 (8)0.0164 (8)0.0169 (8)
F20.1283 (15)0.1036 (12)0.1083 (14)0.0450 (11)0.0014 (11)0.0327 (11)
N10.0465 (10)0.0488 (9)0.0534 (11)0.0040 (7)0.0005 (8)0.0004 (8)
N20.0581 (12)0.0760 (13)0.0698 (14)0.0017 (10)0.0014 (11)0.0026 (10)
O10.0875 (12)0.0556 (9)0.0744 (12)0.0176 (8)0.0097 (9)0.0096 (8)
O20.0777 (11)0.0612 (9)0.0783 (12)0.0010 (8)0.0145 (10)0.0155 (8)
O30.0693 (11)0.0497 (9)0.1138 (15)0.0055 (7)0.0093 (10)0.0193 (9)
Geometric parameters (Å, º) top
C1—C61.372 (3)C11—C121.365 (4)
C1—C21.382 (3)C11—H110.9300
C1—C71.504 (3)C12—C131.376 (4)
C2—F21.335 (3)C12—Cl11.734 (2)
C2—C31.373 (3)C13—C141.374 (3)
C3—C41.355 (4)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.368 (4)C15—C161.435 (3)
C4—H40.9300C15—C171.474 (3)
C5—C61.375 (3)C16—N21.139 (3)
C5—H50.9300C17—O21.214 (3)
C6—F11.358 (3)C17—O31.308 (3)
C7—O11.200 (2)C18—O31.475 (6)
C7—N11.382 (3)C18—C191.491 (8)
C8—C151.365 (3)C18—H18A0.9700
C8—N11.374 (2)C18—H18B0.9700
C8—C91.489 (3)C19—H19A0.9600
C9—C141.379 (3)C19—H19B0.9600
C9—C101.384 (3)C19—H19C0.9600
C10—C111.372 (3)N1—H10.8600
C10—H100.9300
C6—C1—C2115.1 (2)C12—C11—H11120.3
C6—C1—C7124.45 (19)C10—C11—H11120.3
C2—C1—C7120.34 (19)C11—C12—C13121.0 (2)
F2—C2—C3117.8 (2)C11—C12—Cl1120.3 (2)
F2—C2—C1118.6 (2)C13—C12—Cl1118.7 (2)
C3—C2—C1123.6 (2)C14—C13—C12119.5 (2)
C4—C3—C2118.2 (3)C14—C13—H13120.3
C4—C3—H3120.9C12—C13—H13120.3
C2—C3—H3120.9C13—C14—C9120.3 (2)
C3—C4—C5121.6 (2)C13—C14—H14119.9
C3—C4—H4119.2C9—C14—H14119.9
C5—C4—H4119.2C8—C15—C16119.88 (17)
C4—C5—C6118.1 (2)C8—C15—C17123.52 (18)
C4—C5—H5121.0C16—C15—C17116.48 (17)
C6—C5—H5121.0N2—C16—C15177.2 (2)
F1—C6—C1118.17 (18)O2—C17—O3124.01 (19)
F1—C6—C5118.3 (2)O2—C17—C15123.6 (2)
C1—C6—C5123.5 (2)O3—C17—C15112.34 (18)
O1—C7—N1123.20 (19)O3—C18—C19103.8 (6)
O1—C7—C1121.33 (19)O3—C18—H18A111.0
N1—C7—C1115.46 (16)C19—C18—H18A111.0
C15—C8—N1120.33 (16)O3—C18—H18B111.0
C15—C8—C9120.59 (17)C19—C18—H18B111.0
N1—C8—C9118.91 (17)H18A—C18—H18B109.0
C14—C9—C10119.25 (19)C8—N1—C7126.72 (16)
C14—C9—C8119.85 (19)C8—N1—H1116.6
C10—C9—C8120.82 (18)C7—N1—H1116.6
C11—C10—C9120.6 (2)C17—O3—C18121.6 (5)
C11—C10—H10119.7C17—O3—C18'110.6 (4)
C9—C10—H10119.7C18—O3—C18'26.1 (5)
C12—C11—C10119.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.052.674 (2)129
N1—H1···F10.862.362.827 (2)115
C18—H18B···O1i0.972.582.990 (7)106
C10—H10···N2ii0.932.623.302 (3)131
C5—H5···N2iii0.932.593.432 (3)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H13ClF2N2O3
Mr390.76
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.919 (5), 9.7560 (6), 11.2717 (7)
α, β, γ (°)91.971 (1), 110.094 (1), 91.449 (1)
V3)919.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.23 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7196, 3556, 2524
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.10
No. of reflections3556
No. of parameters265
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.052.674 (2)128.6
N1—H1···F10.862.362.827 (2)114.7
C18—H18B···O1i0.972.582.990 (7)105.6
C10—H10···N2ii0.932.623.302 (3)130.9
C5—H5···N2iii0.932.593.432 (3)150.2
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x+1, y, z+1.
 

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCreagh, D. C. & Hubbell, J. H. (1992). International Tables for Crystallography, Vol. C, pp. 200–206. Dordrecht: Kluwer.  Google Scholar
First citationHeller, D., Drexler, H. J., You, J. & Zhang, S. L. (2004). WO Patent 011 414.  Google Scholar
First citationIbers, J. A. & Hamilton, W. C. (1964). Acta Cryst. 17, 781–782.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds