organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di-4-pyridylpropane–4,4′-oxy­di­benzoic acid (1/1)

aCollege of Mechanical & Materials Engineering, Three Gorges University, Yichang 443002, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, ShaanxiKey Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 17 September 2008; accepted 28 October 2008; online 8 November 2008)

In the title compound, C13H14N2·C14H10O5, a 1:1 cocrystal of 1,3-di-4-pyridylpropane (bpp) and 4,4′-oxydibenzoic acid (H2oba), the dihedral angle between the two benzene rings of the flexible H2oba mol­ecule is 57.07 (1)°; the two pyridine rings of bpp make a dihedral angle of 27.52 (1)°. Strong inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into chains, which are then linked into a three-dimensional network through inter­molecular C—H⋯O and ππ stacking inter­actions [centroid–centroid distance = 3.7838 (3) Å].

Related literature

For the use of co-crystallization reactions in developing new methodologies in supra­molecular synthesis, see: Desiraju (2003[Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.]); Shan et al. (2002[Shan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett. 43, 3101-3104.]). For hydrogen bonding and ππ stacking in mol­ecular synthesis, see: Shattock et al. (2005[Shattock, T. R., Vishweshwar, P., Wang, Z. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 2046-2049.]). For a related structure, see: Ma et al. (2006[Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-o1166.]). An independent determination of this structure is reported in the preceeding paper (Li et al., 2008[Li, G., Salim, C. & Hinode, H. (2008). Acta Cryst. E64, o2251.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2·C14H10O5

  • Mr = 456.48

  • Triclinic, [P \overline 1]

  • a = 6.8927 (12) Å

  • b = 11.5788 (19) Å

  • c = 14.974 (3) Å

  • α = 86.638 (3)°

  • β = 81.205 (3)°

  • γ = 73.963 (3)°

  • V = 1134.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.38 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.985

  • 5767 measured reflections

  • 3965 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.232

  • S = 1.01

  • 3965 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 1.86 2.679 (5) 174
O5—H5⋯N1ii 0.82 1.75 2.566 (5) 175
C4—H4⋯O3iii 0.93 2.55 3.418 (6) 155
C5—H5A⋯O3iv 0.93 2.48 3.160 (6) 130
C12—H12⋯O4v 0.93 2.45 3.174 (7) 135
Symmetry codes: (i) x-1, y, z-1; (ii) x+1, y+1, z; (iii) -x, -y+1, -z+1; (iv) x+1, y, z+1; (v) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Co-crystallization reactions provide helpful means for probing the importance and balance between different intermolecular interactions, and thus offer practical guidelines for developing new methodologies in supramolecular synthesis (Desiraju,2003; Shan et al., 2002). The role of hydrogen bonding and ππ stacking for these purposes is well established (Shattock et al.,2005). We attempted to synthesize a CdII complex with the mixed ligand using hydrothermal synthesis conditions. However, we were not successful and a new co-crystal, (bpp)(H2oba)(I), was isolated instead and its structure is reported here. A similar structure has been reported (Ma et al., 2006) and an independent determination of the structure of (I) is reported in the preceeding paper (Li et al., 2008).

The asymmetric unit consists of one bpp and one H2oba as shown in Fig 1. The dihedral angle between the two phenyl rings of the flexible H2oba molecule is 57.07°, while it is 27.52° for the two phenyl rings of the bpp. The COOH group(O4—C27—O5) is co-planar with the phenyl ring and the other COOH group(O2—C20—O3) is slightly twisted with a the twist angle is 10.507 (8)°. In (I), the protonated carboxylate O2 of the flexible H2oba molecule forms two kinds of strong intermolecular hydrogen bonds with atoms N1 and N2 of the bpp molecule (Table 1), linking the molecules into one-dimensional chains. C—H···O hydrogen bonds involving the bpp carbon atoms (C4,C5 and C12) and uncoordinated carboxy oxygen atoms (O3 and O4) provide additional attractive forces between adjacent chains. Furthermore, there are π-π aromatic stacking interactions involving bpp ligands of adjacent units [centroid-centroid distance = 3.7838 (3) Å] that taken together with the C-H···O interactions form a three-dimensional supramolecular motif (Fig. 2).

Related literature top

For the use of co-crystallization reactions in developing new methodologies in supramolecular synthesis, see: Desiraju (2003); Shan et al. (2002). For hydrogen bonding and ππ stacking in molecular synthesis, see: Shattock et al. (2005). For a related structure, see: Ma et al. (2006). For an independent determination of this structure is reported in the preceeding paper (Li et al., 2008).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. H2oba (0.5 mmol, 0.129 g), Cd(CH3COO)2.2H2O(1.5 mmol, 0.400 g), bpp(0.5 mmol, 0.099 g) and water (15 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 453 K for five days, and then cooled slowly to 298 K at which time colourless crystals were obtained.The crystal used for data collection was obtained directly from the reaction mixture on cooling without further re-crystallization.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 ?and O—H = 0.82 ?) and allowed to ride on their parent atoms, with Uiso(H)values equal to 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scheme for the asymmetric unit, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Supramolecular network formed by hydrogen-bonding and ππ stacking interactions.
1,3-Di-4-pyridylpropane–4,4'-oxydibenzoic acid (1/1) top
Crystal data top
C27H24N2O5Z = 2
Mr = 456.48F(000) = 480
Triclinic, P1Dx = 1.336 Mg m3
a = 6.8927 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5788 (19) Åθ = 1.8–25.1°
c = 14.974 (3) ŵ = 0.09 mm1
α = 86.638 (3)°T = 293 K
β = 81.205 (3)°Prism, colorless
γ = 73.963 (3)°0.38 × 0.20 × 0.16 mm
V = 1134.9 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3965 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 48
Tmin = 0.966, Tmax = 0.985k = 1113
5767 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2 + 0.05P]
where P = (Fo2 + 2Fc2)/3
3965 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C27H24N2O5γ = 73.963 (3)°
Mr = 456.48V = 1134.9 (3) Å3
Triclinic, P1Z = 2
a = 6.8927 (12) ÅMo Kα radiation
b = 11.5788 (19) ŵ = 0.09 mm1
c = 14.974 (3) ÅT = 293 K
α = 86.638 (3)°0.38 × 0.20 × 0.16 mm
β = 81.205 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3965 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1530 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.034
5767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.01Δρmax = 0.64 e Å3
3965 reflectionsΔρmin = 0.22 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1091 (7)0.1160 (4)0.5739 (3)0.0694 (12)
N20.6798 (6)0.1948 (4)0.9734 (2)0.0664 (12)
O10.6076 (5)0.3326 (3)0.2752 (2)0.0738 (10)
O20.0318 (6)0.1895 (3)0.0761 (2)0.0776 (11)
H20.12620.19110.04830.116*
O30.1240 (6)0.3872 (3)0.0493 (2)0.0835 (12)
O40.5299 (6)0.7923 (3)0.5091 (3)0.0970 (13)
O50.8627 (5)0.7071 (3)0.4860 (3)0.0918 (12)
H50.86520.76420.51520.138*
C10.6402 (8)0.1023 (4)0.9399 (3)0.0731 (15)
H10.72520.02590.94850.088*
C20.4779 (8)0.1132 (4)0.8923 (3)0.0720 (15)
H2A0.45520.04490.87110.086*
C30.3505 (7)0.2248 (4)0.8766 (3)0.0563 (12)
C40.3945 (7)0.3207 (4)0.9109 (3)0.0665 (14)
H40.31320.39820.90260.080*
C50.5569 (8)0.3026 (4)0.9570 (3)0.0717 (15)
H5A0.58360.36960.97830.086*
C60.1679 (7)0.2448 (4)0.8272 (3)0.0726 (15)
H6A0.04570.27120.87070.087*
H6B0.17050.31000.78370.087*
C70.1503 (7)0.1392 (4)0.7780 (3)0.0723 (15)
H7A0.13950.07490.82130.087*
H7B0.27350.11030.73550.087*
C80.0324 (7)0.1698 (4)0.7273 (3)0.0658 (14)
H8A0.15470.19870.77030.079*
H8B0.02140.23510.68490.079*
C90.0580 (7)0.0684 (4)0.6761 (3)0.0579 (13)
C100.2435 (7)0.0733 (4)0.6501 (3)0.0617 (13)
H100.35570.13810.66640.074*
C110.2627 (8)0.0177 (5)0.6000 (3)0.0684 (14)
H110.38950.01120.58290.082*
C120.0675 (8)0.1175 (4)0.5988 (3)0.0741 (15)
H120.17820.18290.58180.089*
C130.1000 (8)0.0295 (4)0.6480 (3)0.0710 (15)
H130.22950.03650.66220.085*
C140.1947 (7)0.4155 (4)0.1356 (3)0.0669 (14)
H140.12440.48080.10350.080*
C150.3456 (8)0.4285 (4)0.1817 (3)0.0679 (14)
H150.38110.50070.17870.081*
C160.4428 (7)0.3329 (4)0.2322 (3)0.0600 (13)
C170.3950 (7)0.2251 (4)0.2337 (3)0.0686 (15)
H170.46330.16020.26680.082*
C180.2452 (7)0.2132 (4)0.1858 (3)0.0642 (14)
H180.21230.14030.18760.077*
C190.1451 (7)0.3072 (4)0.1360 (3)0.0520 (12)
C200.0181 (8)0.3011 (5)0.0835 (3)0.0645 (14)
C210.6111 (8)0.4317 (4)0.3224 (3)0.0572 (12)
C220.4418 (8)0.5167 (4)0.3598 (3)0.0655 (14)
H220.31260.51290.35180.079*
C230.4631 (7)0.6079 (4)0.4093 (3)0.0618 (13)
H230.34830.66670.43360.074*
C240.6554 (7)0.6123 (4)0.4232 (3)0.0533 (12)
C250.8227 (7)0.5255 (4)0.3868 (3)0.0659 (14)
H250.95190.52760.39620.079*
C260.8021 (7)0.4350 (4)0.3364 (3)0.0656 (13)
H260.91680.37630.31200.079*
C270.6727 (9)0.7134 (5)0.4775 (3)0.0678 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.055 (3)0.088 (3)0.072 (3)0.025 (3)0.024 (2)0.011 (2)
N20.069 (3)0.065 (3)0.075 (3)0.024 (2)0.024 (2)0.006 (2)
O10.070 (2)0.069 (2)0.090 (3)0.0147 (18)0.036 (2)0.0197 (18)
O20.090 (3)0.060 (2)0.098 (3)0.0266 (19)0.045 (2)0.0052 (17)
O30.088 (3)0.066 (2)0.105 (3)0.015 (2)0.055 (2)0.007 (2)
O40.073 (3)0.086 (3)0.132 (3)0.001 (2)0.034 (3)0.050 (2)
O50.071 (3)0.096 (3)0.119 (3)0.026 (2)0.027 (2)0.041 (2)
C10.084 (4)0.060 (3)0.086 (4)0.025 (3)0.032 (3)0.002 (3)
C20.086 (4)0.061 (3)0.082 (4)0.027 (3)0.035 (3)0.005 (3)
C30.058 (3)0.056 (3)0.058 (3)0.019 (3)0.011 (3)0.011 (2)
C40.058 (3)0.057 (3)0.087 (4)0.013 (3)0.019 (3)0.013 (3)
C50.073 (4)0.059 (3)0.089 (4)0.019 (3)0.022 (3)0.015 (3)
C60.068 (4)0.072 (3)0.083 (4)0.021 (3)0.020 (3)0.014 (3)
C70.074 (4)0.074 (3)0.080 (4)0.027 (3)0.026 (3)0.013 (3)
C80.062 (3)0.072 (3)0.069 (3)0.018 (3)0.025 (3)0.012 (3)
C90.058 (4)0.067 (3)0.053 (3)0.018 (3)0.020 (3)0.004 (2)
C100.059 (4)0.059 (3)0.071 (3)0.012 (3)0.026 (3)0.008 (2)
C110.054 (4)0.080 (3)0.079 (4)0.019 (3)0.032 (3)0.001 (3)
C120.062 (4)0.071 (3)0.084 (4)0.007 (3)0.008 (3)0.019 (3)
C130.055 (4)0.075 (3)0.085 (4)0.010 (3)0.021 (3)0.026 (3)
C140.078 (4)0.059 (3)0.070 (3)0.019 (3)0.030 (3)0.001 (2)
C150.079 (4)0.063 (3)0.077 (4)0.033 (3)0.029 (3)0.003 (3)
C160.066 (4)0.059 (3)0.062 (3)0.018 (3)0.024 (3)0.009 (2)
C170.075 (4)0.056 (3)0.080 (4)0.012 (3)0.034 (3)0.005 (3)
C180.074 (4)0.047 (3)0.080 (4)0.021 (3)0.027 (3)0.003 (2)
C190.055 (3)0.050 (3)0.055 (3)0.016 (2)0.014 (2)0.010 (2)
C200.066 (4)0.063 (3)0.071 (4)0.022 (3)0.019 (3)0.007 (3)
C210.062 (4)0.058 (3)0.059 (3)0.021 (3)0.021 (3)0.002 (2)
C220.049 (3)0.079 (3)0.075 (4)0.021 (3)0.019 (3)0.009 (3)
C230.056 (3)0.060 (3)0.068 (3)0.002 (3)0.026 (3)0.011 (2)
C240.057 (3)0.060 (3)0.050 (3)0.020 (3)0.017 (3)0.005 (2)
C250.050 (3)0.078 (3)0.075 (4)0.024 (3)0.008 (3)0.020 (3)
C260.047 (3)0.072 (3)0.076 (4)0.009 (3)0.010 (3)0.018 (3)
C270.065 (4)0.070 (4)0.075 (4)0.019 (3)0.025 (3)0.007 (3)
Geometric parameters (Å, º) top
N1—C121.321 (6)C9—C131.372 (6)
N1—C111.352 (6)C9—C101.379 (5)
N2—C11.320 (5)C10—C111.375 (6)
N2—C51.333 (5)C10—H100.9300
O1—C161.387 (5)C11—H110.9300
O1—C211.390 (5)C12—C131.376 (6)
O2—C201.333 (5)C12—H120.9300
O2—H20.8200C13—H130.9300
O3—C201.201 (5)C14—C151.378 (6)
O4—C271.200 (5)C14—C191.387 (5)
O5—C271.317 (6)C14—H140.9300
O5—H50.8200C15—C161.376 (6)
C1—C21.388 (6)C15—H150.9300
C1—H10.9300C16—C171.374 (6)
C2—C31.377 (6)C17—C181.384 (6)
C2—H2A0.9300C17—H170.9300
C3—C41.374 (5)C18—C191.365 (6)
C3—C61.513 (6)C18—H180.9300
C4—C51.365 (6)C19—C201.487 (6)
C4—H40.9300C21—C221.369 (6)
C5—H5A0.9300C21—C261.375 (6)
C6—C71.505 (5)C22—C231.378 (5)
C6—H6A0.9700C22—H220.9300
C6—H6B0.9700C23—C241.387 (6)
C7—C81.518 (6)C23—H230.9300
C7—H7A0.9700C24—C251.367 (6)
C7—H7B0.9700C24—C271.505 (6)
C8—C91.502 (5)C25—C261.377 (6)
C8—H8A0.9700C25—H250.9300
C8—H8B0.9700C26—H260.9300
C12—N1—C11114.4 (4)N1—C12—H12117.5
C1—N2—C5116.0 (4)C13—C12—H12117.5
C16—O1—C21121.5 (4)C9—C13—C12120.3 (5)
C20—O2—H2109.5C9—C13—H13119.9
C27—O5—H5109.5C12—C13—H13119.9
N2—C1—C2123.2 (5)C15—C14—C19121.6 (4)
N2—C1—H1118.4C15—C14—H14119.2
C2—C1—H1118.4C19—C14—H14119.2
C3—C2—C1120.3 (4)C16—C15—C14118.8 (4)
C3—C2—H2A119.9C16—C15—H15120.6
C1—C2—H2A119.9C14—C15—H15120.6
C4—C3—C2116.0 (4)C17—C16—C15120.3 (4)
C4—C3—C6120.2 (4)C17—C16—O1115.6 (4)
C2—C3—C6123.8 (4)C15—C16—O1123.7 (4)
C5—C4—C3120.2 (4)C16—C17—C18120.0 (4)
C5—C4—H4119.9C16—C17—H17120.0
C3—C4—H4119.9C18—C17—H17120.0
N2—C5—C4124.2 (4)C19—C18—C17120.7 (4)
N2—C5—H5A117.9C19—C18—H18119.6
C4—C5—H5A117.9C17—C18—H18119.6
C7—C6—C3116.9 (4)C18—C19—C14118.5 (4)
C7—C6—H6A108.1C18—C19—C20123.6 (4)
C3—C6—H6A108.1C14—C19—C20117.9 (4)
C7—C6—H6B108.1O3—C20—O2123.2 (4)
C3—C6—H6B108.1O3—C20—C19123.7 (5)
H6A—C6—H6B107.3O2—C20—C19113.1 (4)
C6—C7—C8112.9 (4)C22—C21—C26120.2 (4)
C6—C7—H7A109.0C22—C21—O1124.9 (4)
C8—C7—H7A109.0C26—C21—O1114.7 (4)
C6—C7—H7B109.0C21—C22—C23119.9 (4)
C8—C7—H7B109.0C21—C22—H22120.0
H7A—C7—H7B107.8C23—C22—H22120.0
C9—C8—C7115.6 (4)C22—C23—C24120.2 (4)
C9—C8—H8A108.4C22—C23—H23119.9
C7—C8—H8A108.4C24—C23—H23119.9
C9—C8—H8B108.4C25—C24—C23119.2 (4)
C7—C8—H8B108.4C25—C24—C27122.1 (4)
H8A—C8—H8B107.4C23—C24—C27118.7 (5)
C13—C9—C10116.1 (4)C24—C25—C26120.8 (4)
C13—C9—C8123.2 (4)C24—C25—H25119.6
C10—C9—C8120.6 (4)C26—C25—H25119.6
C11—C10—C9120.1 (4)C21—C26—C25119.7 (5)
C11—C10—H10120.0C21—C26—H26120.1
C9—C10—H10120.0C25—C26—H26120.1
N1—C11—C10124.2 (4)O4—C27—O5123.2 (5)
N1—C11—H11117.9O4—C27—C24124.1 (5)
C10—C11—H11117.9O5—C27—C24112.7 (5)
N1—C12—C13125.0 (5)
C5—N2—C1—C21.8 (7)C15—C16—C17—C181.5 (8)
N2—C1—C2—C31.2 (8)O1—C16—C17—C18174.2 (4)
C1—C2—C3—C40.4 (7)C16—C17—C18—C190.8 (8)
C1—C2—C3—C6178.7 (5)C17—C18—C19—C141.0 (7)
C2—C3—C4—C50.4 (7)C17—C18—C19—C20179.6 (4)
C6—C3—C4—C5178.8 (4)C15—C14—C19—C182.1 (7)
C1—N2—C5—C41.8 (7)C15—C14—C19—C20179.3 (4)
C3—C4—C5—N21.1 (8)C18—C19—C20—O3170.0 (5)
C4—C3—C6—C7169.8 (4)C14—C19—C20—O38.5 (7)
C2—C3—C6—C711.9 (7)C18—C19—C20—O211.6 (7)
C3—C6—C7—C8177.5 (4)C14—C19—C20—O2169.8 (4)
C6—C7—C8—C9179.6 (4)C16—O1—C21—C2224.9 (7)
C7—C8—C9—C1323.0 (7)C16—O1—C21—C26160.3 (4)
C7—C8—C9—C10160.9 (4)C26—C21—C22—C232.0 (7)
C13—C9—C10—C110.9 (7)O1—C21—C22—C23176.6 (4)
C8—C9—C10—C11177.2 (4)C21—C22—C23—C241.5 (7)
C12—N1—C11—C101.6 (7)C22—C23—C24—C250.2 (7)
C9—C10—C11—N10.8 (7)C22—C23—C24—C27179.9 (4)
C11—N1—C12—C130.8 (7)C23—C24—C25—C260.5 (7)
C10—C9—C13—C121.7 (7)C27—C24—C25—C26179.2 (4)
C8—C9—C13—C12177.9 (4)C22—C21—C26—C251.3 (7)
N1—C12—C13—C90.9 (8)O1—C21—C26—C25176.4 (4)
C19—C14—C15—C162.8 (8)C24—C25—C26—C210.0 (7)
C14—C15—C16—C172.4 (8)C25—C24—C27—O4178.6 (5)
C14—C15—C16—O1174.5 (4)C23—C24—C27—O41.1 (8)
C21—O1—C16—C17144.3 (4)C25—C24—C27—O50.5 (7)
C21—O1—C16—C1543.3 (7)C23—C24—C27—O5179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.862.679 (5)174
O5—H5···N1ii0.821.752.566 (5)175
C4—H4···O3iii0.932.553.418 (6)155
C5—H5A···O3iv0.932.483.160 (6)130
C12—H12···O4v0.932.453.174 (7)135
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H24N2O5
Mr456.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8927 (12), 11.5788 (19), 14.974 (3)
α, β, γ (°)86.638 (3), 81.205 (3), 73.963 (3)
V3)1134.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5767, 3965, 1530
Rint0.034
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.232, 1.01
No. of reflections3965
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.862.679 (5)173.6
O5—H5···N1ii0.821.752.566 (5)175.4
C4—H4···O3iii0.932.553.418 (6)154.7
C5—H5A···O3iv0.932.483.160 (6)130.3
C12—H12···O4v0.932.453.174 (7)135.0
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x, y1, z.
 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Key Project of the Chinese Ministry of Education (208143) and the Important Project of Hubei Provincial Education Office (09HB81).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.  Web of Science CrossRef CAS Google Scholar
First citationLi, G., Salim, C. & Hinode, H. (2008). Acta Cryst. E64, o2251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett. 43, 3101–3104.  Web of Science CSD CrossRef CAS Google Scholar
First citationShattock, T. R., Vishweshwar, P., Wang, Z. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 2046–2049.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds