metal-organic compounds
Bis{2-[(2-cyanophenyl)iminomethyl]phenolato}copper(II)
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn
In the title mononuclear copper(II) complex, [Cu(C14H9N2O)2], the CuII atom, situated on an inversion centre, shows a slightly distorted square-planar geometry and is coordinated by the N and O atoms from two deprotonated symmetry-related Schiff base ligands. The Cu—N and Cu—O bond lengths are 2.009 (2) and 1.888 (2) Å, respectively. The dihedral angle between the cyanophenyl rings and phenolate rings is 42.28 (13)°.
Related literature
For Schiff base complexes with copper(II) and nickel(II), see: Gong et al. (2008); Kitaura et al. (2004); Marganian et al. (1995). For bond-length data, see: Jian et al. (2004); Ünver (2002). For a related structure, see: Xia et al. (2008).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680803417X/gw2050sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803417X/gw2050Isup2.hkl
2-(2-Cyanophenyliminomethyl)phenol was prepared according to the literature(Xia et al., 2008).CuCl2.2H2O(17. mg, 0.1 mmol) in methanol (5 ml) was added to the solution of 2-(2-cyanophenyliminomethyl)phenol (22.2 mg, 0.1 mmol)in the methanol (5 ml), pH of themixture was adjusted to 8–9 and stirred for 4 h. The filtrate was kept at room temperature for about two weeks, and green block crystals of (I) for X-ray single-crystal investigation were obtained.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C14H9N2O)2] | F(000) = 518 |
Mr = 506.00 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2373 reflections |
a = 9.698 (3) Å | θ = 3.1–27.4° |
b = 11.403 (3) Å | µ = 0.99 mm−1 |
c = 10.889 (3) Å | T = 293 K |
β = 107.570 (11)° | Block, red |
V = 1148.0 (6) Å3 | 0.15 × 0.10 × 0.10 mm |
Z = 2 |
Rigaku Mercury2 diffractometer | 2629 independent reflections |
Radiation source: fine-focus sealed tube | 1952 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −14→14 |
Tmin = 0.909, Tmax = 1.000 | l = −14→14 |
11307 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2943P] where P = (Fo2 + 2Fc2)/3 |
2629 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Cu(C14H9N2O)2] | V = 1148.0 (6) Å3 |
Mr = 506.00 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.698 (3) Å | µ = 0.99 mm−1 |
b = 11.403 (3) Å | T = 293 K |
c = 10.889 (3) Å | 0.15 × 0.10 × 0.10 mm |
β = 107.570 (11)° |
Rigaku Mercury2 diffractometer | 2629 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1952 reflections with I > 2σ(I) |
Tmin = 0.909, Tmax = 1.000 | Rint = 0.057 |
11307 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.26 e Å−3 |
2629 reflections | Δρmin = −0.43 e Å−3 |
160 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.0000 | 0.5000 | 0.0000 | 0.03878 (18) | |
N1 | 0.9612 (2) | 0.6674 (2) | 0.0368 (2) | 0.0383 (5) | |
O1 | 1.0810 (2) | 0.46983 (18) | 0.1778 (2) | 0.0469 (5) | |
C8 | 0.8569 (3) | 0.7359 (3) | −0.0563 (3) | 0.0400 (6) | |
C1 | 1.1420 (3) | 0.6686 (3) | 0.2473 (3) | 0.0416 (7) | |
C7 | 1.0377 (3) | 0.7214 (3) | 0.1397 (3) | 0.0416 (7) | |
H7A | 1.0234 | 0.8018 | 0.1439 | 0.050* | |
C9 | 0.7154 (3) | 0.6925 (3) | −0.1043 (3) | 0.0469 (7) | |
C2 | 1.1568 (3) | 0.5450 (3) | 0.2631 (3) | 0.0403 (7) | |
C4 | 1.3310 (4) | 0.5785 (3) | 0.4717 (3) | 0.0587 (9) | |
H4A | 1.3938 | 0.5479 | 0.5471 | 0.070* | |
C6 | 1.2221 (3) | 0.7432 (3) | 0.3469 (3) | 0.0535 (8) | |
H6A | 1.2098 | 0.8239 | 0.3373 | 0.064* | |
C13 | 0.8922 (4) | 0.8413 (3) | −0.1019 (3) | 0.0507 (8) | |
H13A | 0.9852 | 0.8715 | −0.0698 | 0.061* | |
C14 | 0.6811 (3) | 0.5801 (3) | −0.0602 (3) | 0.0539 (8) | |
C10 | 0.6108 (4) | 0.7564 (4) | −0.1967 (3) | 0.0624 (10) | |
H10A | 0.5162 | 0.7291 | −0.2270 | 0.075* | |
C12 | 0.7880 (5) | 0.9012 (3) | −0.1957 (4) | 0.0670 (10) | |
H12A | 0.8126 | 0.9711 | −0.2280 | 0.080* | |
C5 | 1.3176 (4) | 0.6996 (3) | 0.4574 (3) | 0.0601 (9) | |
H5A | 1.3720 | 0.7496 | 0.5211 | 0.072* | |
C3 | 1.2547 (4) | 0.5035 (3) | 0.3782 (3) | 0.0507 (8) | |
H3A | 1.2678 | 0.4231 | 0.3909 | 0.061* | |
N2 | 0.6591 (4) | 0.4905 (3) | −0.0242 (4) | 0.0716 (9) | |
C11 | 0.6491 (5) | 0.8599 (4) | −0.2422 (4) | 0.0729 (12) | |
H11A | 0.5805 | 0.9021 | −0.3049 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0424 (3) | 0.0348 (3) | 0.0347 (3) | 0.0037 (2) | 0.0050 (2) | −0.0003 (2) |
N1 | 0.0399 (13) | 0.0373 (13) | 0.0349 (12) | 0.0036 (10) | 0.0069 (10) | 0.0010 (10) |
O1 | 0.0581 (14) | 0.0381 (12) | 0.0378 (12) | 0.0047 (9) | 0.0046 (10) | −0.0004 (8) |
C8 | 0.0428 (16) | 0.0400 (16) | 0.0340 (15) | 0.0077 (12) | 0.0066 (12) | −0.0006 (12) |
C1 | 0.0385 (16) | 0.0445 (17) | 0.0373 (16) | 0.0018 (12) | 0.0044 (12) | −0.0004 (12) |
C7 | 0.0445 (17) | 0.0332 (15) | 0.0433 (16) | 0.0020 (12) | 0.0074 (13) | −0.0001 (12) |
C9 | 0.0429 (18) | 0.0526 (19) | 0.0407 (17) | 0.0068 (14) | 0.0059 (13) | −0.0004 (14) |
C2 | 0.0407 (17) | 0.0443 (16) | 0.0349 (15) | 0.0040 (13) | 0.0098 (13) | 0.0009 (12) |
C4 | 0.050 (2) | 0.073 (3) | 0.0432 (19) | 0.0075 (17) | −0.0005 (15) | 0.0027 (16) |
C6 | 0.058 (2) | 0.0493 (19) | 0.0458 (19) | −0.0028 (15) | 0.0038 (15) | −0.0048 (14) |
C13 | 0.057 (2) | 0.0476 (18) | 0.0479 (19) | 0.0047 (15) | 0.0162 (15) | 0.0054 (14) |
C14 | 0.0386 (18) | 0.071 (2) | 0.0456 (19) | −0.0032 (16) | 0.0030 (14) | −0.0054 (17) |
C10 | 0.046 (2) | 0.081 (3) | 0.050 (2) | 0.0174 (18) | −0.0011 (16) | 0.0000 (18) |
C12 | 0.092 (3) | 0.051 (2) | 0.055 (2) | 0.0172 (19) | 0.018 (2) | 0.0155 (16) |
C5 | 0.061 (2) | 0.065 (2) | 0.0416 (19) | −0.0074 (17) | −0.0045 (16) | −0.0060 (16) |
C3 | 0.056 (2) | 0.0516 (19) | 0.0402 (17) | 0.0096 (15) | 0.0080 (14) | 0.0061 (14) |
N2 | 0.064 (2) | 0.067 (2) | 0.077 (2) | −0.0158 (16) | 0.0115 (17) | 0.0050 (17) |
C11 | 0.079 (3) | 0.073 (3) | 0.055 (2) | 0.036 (2) | 0.003 (2) | 0.0149 (19) |
Cu1—O1i | 1.888 (2) | C4—C3 | 1.364 (4) |
Cu1—O1 | 1.888 (2) | C4—C5 | 1.391 (5) |
Cu1—N1i | 2.009 (2) | C4—H4A | 0.9300 |
Cu1—N1 | 2.009 (2) | C6—C5 | 1.371 (4) |
N1—C7 | 1.298 (3) | C6—H6A | 0.9300 |
N1—C8 | 1.429 (3) | C13—C12 | 1.381 (4) |
O1—C2 | 1.313 (4) | C13—H13A | 0.9300 |
C8—C13 | 1.382 (4) | C14—N2 | 1.137 (4) |
C8—C9 | 1.403 (4) | C10—C11 | 1.374 (5) |
C1—C2 | 1.421 (4) | C10—H10A | 0.9300 |
C1—C6 | 1.413 (4) | C12—C11 | 1.372 (5) |
C1—C7 | 1.429 (4) | C12—H12A | 0.9300 |
C7—H7A | 0.9300 | C5—H5A | 0.9300 |
C9—C10 | 1.398 (4) | C3—H3A | 0.9300 |
C9—C14 | 1.443 (5) | C11—H11A | 0.9300 |
C2—C3 | 1.407 (4) | ||
O1i—Cu1—O1 | 180.00 (12) | C3—C4—C5 | 121.9 (3) |
O1i—Cu1—N1i | 90.78 (9) | C3—C4—H4A | 119.1 |
O1—Cu1—N1i | 89.22 (9) | C5—C4—H4A | 119.1 |
O1i—Cu1—N1 | 89.22 (9) | C5—C6—C1 | 121.7 (3) |
O1—Cu1—N1 | 90.78 (9) | C5—C6—H6A | 119.2 |
N1i—Cu1—N1 | 180.00 (13) | C1—C6—H6A | 119.2 |
C7—N1—C8 | 116.8 (2) | C8—C13—C12 | 119.4 (3) |
C7—N1—Cu1 | 122.03 (19) | C8—C13—H13A | 120.3 |
C8—N1—Cu1 | 120.84 (18) | C12—C13—H13A | 120.3 |
C2—O1—Cu1 | 125.24 (19) | N2—C14—C9 | 177.6 (4) |
C13—C8—C9 | 119.5 (3) | C11—C10—C9 | 119.4 (3) |
C13—C8—N1 | 122.1 (3) | C11—C10—H10A | 120.3 |
C9—C8—N1 | 118.4 (3) | C9—C10—H10A | 120.3 |
C2—C1—C6 | 119.5 (3) | C11—C12—C13 | 121.3 (4) |
C2—C1—C7 | 122.5 (3) | C11—C12—H12A | 119.3 |
C6—C1—C7 | 117.7 (3) | C13—C12—H12A | 119.3 |
N1—C7—C1 | 125.9 (3) | C6—C5—C4 | 118.3 (3) |
N1—C7—H7A | 117.1 | C6—C5—H5A | 120.9 |
C1—C7—H7A | 117.1 | C4—C5—H5A | 120.9 |
C8—C9—C10 | 120.0 (3) | C4—C3—C2 | 121.5 (3) |
C8—C9—C14 | 119.1 (3) | C4—C3—H3A | 119.3 |
C10—C9—C14 | 120.8 (3) | C2—C3—H3A | 119.3 |
O1—C2—C3 | 119.6 (3) | C12—C11—C10 | 120.3 (3) |
O1—C2—C1 | 123.2 (3) | C12—C11—H11A | 119.9 |
C3—C2—C1 | 117.2 (3) | C10—C11—H11A | 119.9 |
Symmetry code: (i) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C14H9N2O)2] |
Mr | 506.00 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.698 (3), 11.403 (3), 10.889 (3) |
β (°) | 107.570 (11) |
V (Å3) | 1148.0 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.99 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.909, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11307, 2629, 1952 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.125, 1.09 |
No. of reflections | 2629 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.43 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
HJX acknowledges a start-up grant from Southeast University, People's Republic of China
References
Gong, X.-X., Xia, R. & Xu, H.-J. (2008). Acta Cryst. E64, m494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jian, F.-F., Li, L., Sun, P.-P. & Xiao, H.-L. (2004). Chin. J. Inorg. Chem. 20, 1295–1298. CAS Google Scholar
Kitaura, R., Onoyama, G., Sakamoto, H., Matsuda, R., Noro, S. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 2684–2687. Web of Science CSD CrossRef CAS Google Scholar
Marganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc. 117, 1584–1594. CSD CrossRef CAS Web of Science Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ünver, H. (2002). J. Mol. Struct. 641, 35–40. Web of Science CSD CrossRef Google Scholar
Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal derivatives of Schiff bases have been studied extensively, and copper(II) and nickel(II) complexes play an important role in both synthetic and structural research. These complexes have received much attention in recent years (Marganian et al., 1995; Kitaura et al. 2004). We have reported previously the crystal structures of monomeric Schiff base complexes of NiII (Gong et al., 2008). As an a continuation of our research on the synthesis and structure of transition metal complexesof Schiff base compounds, we here report the results of the reaction of copper(II) with the didentate ligand 2-(2-cyanophenyliminomethyl)phenol, forming the title compound (I).
Fig.1 shows the molecular structure of the title compound. The copper(II) is coordinated by the two imine N and two phenolate O atoms of the two Schiff base ligands in a slightly distorted square-planar geometry in a trans arrangement. 2-(2-cyanophenyliminomethyl)phenol loses a proton form the hydroxyl group and acts as a singlely charged bidentate ligand coordinating to Copper(II) through the phenolate O and imine N atoms. The dihedral angle between the C1—C6 and C8—C13 benzene rings is 42.28 (0.13)°. The N1—Cu1—O1 bond angles is 90.78 (9)°. The two equivalent Cu–N and Cu–O distances are 2.009 (2)Å and 1.888 (2) Å, respectively. All these parameters conform to values in other square-planar-coordinated copper(II) compounds(Jian et al., 2004; Ünver 2002).