metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(E)-benzyl­imino­meth­yl]-4-methyl­phen­olato-κ2N,O}cobalt(II)

aSchool of Science, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China, and bXi'an LiBang Pharmaceutical Co. Ltd, Xi'an 710086, People's Republic of China
*Correspondence e-mail: fangfangdang@yahoo.com.cn

(Received 3 October 2008; accepted 19 October 2008; online 8 November 2008)

In the title complex, [Co(C15H14NO)2], the CoII atom, situated on an inversion centre, is coordinated by two O and two N atoms from two symmetry-related bidentate Schiff base ligands in a slightly distorted square-planar geometry. The two phenolate rings form a dihedral angle of 10.53 (2)°.

Related literature

For background on complexes of Schiff bases with transition metals, see: Rodriguez Barbarin et al. (1994[Rodriguez Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205-207.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C15H14NO)2]

  • Mr = 507.47

  • Monoclinic, P 21 /c

  • a = 13.735 (3) Å

  • b = 10.625 (2) Å

  • c = 8.7926 (17) Å

  • β = 107.394 (2)°

  • V = 1224.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 296 (2) K

  • 0.37 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.765, Tmax = 0.825

  • 10315 measured reflections

  • 2807 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.080

  • S = 1.08

  • 2807 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.8259 (11)
Co1—N1 1.9258 (11)
O1i—Co1—O1 180.0
O1i—Co1—N1 86.99 (5)
O1—Co1—N1 93.01 (5)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Rodriguez Barbarin et al., 1994). Salicylaldehyde and its derivatives are useful carbonyl precursors for the synthesis of a large variety of Schiff bases. Here we report on a new cobalt(II) complex (I).

The molecular structure of (I) as illustrated in Fig. 1 has the Co2+ center in a square geometry as it its coordinated by two O atoms and two N atoms from two 2-((E)-(benzylimino)methyl)-4-methylphenol bidentate chelating ligand. The Co1—O1 distance of 1.8259 (11) Å is shorter than the distance of Co1—N1 (1.9258 (11)) (Table 1). The dihedral angle between the plane of O1, N1, Co2+ and two parallel phenol rings with the distance of 0.484 Å is 10.53 °.

Related literature top

For background on complexes of Schiff bases with transition

metals, see: Rodriguez Barbarin et al. (1994).

Experimental top

1 mmol of CoCl2.6H2O (0.238 g) were added to a 15 ml ethanol solution containing 2 mmol (0.450 g) 2-((E)-(benzylimino)methyl)-4-methylphenol. The resulting mixture was stirred for about 0.5 h. The slow vaporization of the solvent yielded after about 5 d dark brown single crystals. Yield: 68.8%. Calcd. for C30H28CoN2O2: C,71.00; H, 5.56; N, 5.52; Found: C, 71.31; H, 5.60; N,5.47%.

Refinement top

All H atoms were located from difference Fourier syntheses, H atoms from the C—H groups were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A, 0.96%A, 0.97%A;) and Uiso(H) values equal to 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (A) -x + 1, -y + 2, -z]
Bis{2-[(E)-benzyliminomethyl]-4-methylphenolato-κ2N,O}cobalt(II) top
Crystal data top
[Co(C15H14NO)2]F(000) = 530.0
Mr = 507.47Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2457 reflections
a = 13.735 (3) Åθ = 1.0–27.6°
b = 10.625 (2) ŵ = 0.73 mm1
c = 8.7926 (17) ÅT = 296 K
β = 107.394 (2)°Block, dark brown
V = 1224.5 (4) Å30.37 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2807 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.6°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1717
Tmin = 0.765, Tmax = 0.825k = 1113
10315 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
2807 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co(C15H14NO)2]V = 1224.5 (4) Å3
Mr = 507.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.735 (3) ŵ = 0.73 mm1
b = 10.625 (2) ÅT = 296 K
c = 8.7926 (17) Å0.37 × 0.30 × 0.25 mm
β = 107.394 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
2807 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2404 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.825Rint = 0.022
10315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
2807 reflectionsΔρmin = 0.25 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50001.00000.00000.03135 (9)
N10.50882 (8)0.85049 (10)0.12722 (13)0.0361 (2)
O10.63563 (8)1.03507 (11)0.08454 (14)0.0505 (3)
C90.35213 (9)0.85593 (12)0.21649 (15)0.0350 (3)
C10.69440 (10)0.84697 (13)0.23467 (16)0.0398 (3)
C80.41511 (10)0.78371 (12)0.13166 (16)0.0384 (3)
H8A0.43410.70330.18450.046*
H8B0.37350.76700.02330.046*
C70.59332 (10)0.80109 (13)0.21412 (16)0.0398 (3)
H7A0.58770.72800.26910.048*
C140.39142 (11)0.95166 (14)0.32390 (16)0.0402 (3)
H14A0.45890.97670.34250.048*
C20.77878 (11)0.77682 (15)0.32681 (18)0.0486 (3)
H2A0.76710.70110.37150.058*
C60.71010 (11)0.96291 (15)0.16800 (17)0.0408 (3)
C30.87726 (11)0.81665 (17)0.35251 (19)0.0534 (4)
C100.25147 (11)0.82053 (16)0.19115 (18)0.0501 (4)
H10A0.22370.75650.11920.060*
C40.89188 (11)0.93208 (18)0.2855 (2)0.0546 (4)
H4A0.95810.96120.30180.065*
C110.19180 (12)0.87956 (19)0.2719 (2)0.0608 (4)
H11A0.12440.85450.25410.073*
C130.33122 (14)1.01077 (14)0.4041 (2)0.0495 (4)
H13A0.35861.07510.47590.059*
C120.23131 (14)0.97510 (17)0.3785 (2)0.0554 (4)
H12A0.19101.01490.43220.066*
C50.81198 (13)1.00369 (15)0.1967 (2)0.0511 (4)
H5A0.82501.08000.15480.061*
C150.96691 (15)0.7397 (2)0.4506 (3)0.0824 (6)
H15A0.94420.68220.51710.124*
H15B1.01770.79490.51610.124*
H15C0.99570.69330.38080.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02864 (14)0.03280 (15)0.03417 (14)0.00058 (9)0.01176 (10)0.00084 (9)
N10.0347 (5)0.0355 (6)0.0411 (6)0.0002 (4)0.0158 (5)0.0030 (5)
O10.0353 (5)0.0509 (6)0.0613 (7)0.0012 (4)0.0085 (5)0.0136 (5)
C90.0351 (6)0.0364 (7)0.0347 (6)0.0026 (5)0.0120 (5)0.0031 (5)
C10.0369 (7)0.0438 (7)0.0403 (7)0.0051 (5)0.0143 (5)0.0024 (6)
C80.0393 (7)0.0329 (6)0.0447 (7)0.0037 (5)0.0150 (6)0.0022 (5)
C70.0430 (7)0.0356 (7)0.0437 (7)0.0034 (5)0.0173 (6)0.0003 (5)
C140.0383 (7)0.0410 (7)0.0426 (7)0.0049 (6)0.0144 (6)0.0023 (6)
C20.0454 (8)0.0500 (8)0.0520 (8)0.0105 (6)0.0169 (7)0.0052 (7)
C60.0361 (7)0.0466 (7)0.0403 (7)0.0034 (6)0.0126 (6)0.0003 (6)
C30.0395 (8)0.0686 (10)0.0526 (9)0.0140 (7)0.0146 (7)0.0047 (8)
C100.0412 (8)0.0631 (10)0.0476 (8)0.0144 (7)0.0158 (6)0.0118 (7)
C40.0332 (7)0.0732 (12)0.0589 (9)0.0031 (7)0.0162 (7)0.0012 (8)
C110.0390 (8)0.0865 (13)0.0625 (10)0.0105 (8)0.0237 (7)0.0095 (9)
C130.0578 (10)0.0470 (9)0.0475 (8)0.0029 (7)0.0215 (8)0.0085 (6)
C120.0531 (10)0.0660 (10)0.0556 (9)0.0064 (8)0.0292 (8)0.0027 (8)
C50.0378 (8)0.0589 (10)0.0574 (10)0.0016 (6)0.0157 (7)0.0068 (7)
C150.0461 (9)0.1026 (17)0.0950 (14)0.0244 (11)0.0154 (10)0.0311 (14)
Geometric parameters (Å, º) top
Co1—O1i1.8259 (11)C2—C31.370 (2)
Co1—O11.8259 (11)C2—H2A0.9300
Co1—N11.9258 (11)C6—C51.414 (2)
Co1—N1i1.9258 (11)C3—C41.401 (2)
N1—C71.2946 (17)C3—C151.514 (2)
N1—C81.4804 (16)C10—C111.385 (2)
O1—C61.3129 (19)C10—H10A0.9300
C9—C141.3831 (19)C4—C51.371 (2)
C9—C101.3851 (18)C4—H4A0.9300
C9—C81.5096 (17)C11—C121.378 (3)
C1—C61.408 (2)C11—H11A0.9300
C1—C21.412 (2)C13—C121.376 (2)
C1—C71.4311 (19)C13—H13A0.9300
C8—H8A0.9700C12—H12A0.9300
C8—H8B0.9700C5—H5A0.9300
C7—H7A0.9300C15—H15A0.9600
C14—C131.387 (2)C15—H15B0.9600
C14—H14A0.9300C15—H15C0.9600
O1i—Co1—O1180.0O1—C6—C1123.56 (13)
O1i—Co1—N186.99 (5)O1—C6—C5119.02 (14)
O1—Co1—N193.01 (5)C1—C6—C5117.41 (13)
O1i—Co1—N1i93.01 (5)C2—C3—C4117.37 (14)
O1—Co1—N1i86.99 (5)C2—C3—C15121.46 (17)
N1—Co1—N1i180.00 (4)C4—C3—C15121.17 (16)
C7—N1—C8115.04 (11)C11—C10—C9120.66 (14)
C7—N1—Co1124.53 (9)C11—C10—H10A119.7
C8—N1—Co1120.43 (8)C9—C10—H10A119.7
C6—O1—Co1129.64 (11)C5—C4—C3122.29 (15)
C14—C9—C10118.45 (12)C5—C4—H4A118.9
C14—C9—C8123.16 (12)C3—C4—H4A118.9
C10—C9—C8118.32 (12)C12—C11—C10120.60 (14)
C6—C1—C2119.94 (13)C12—C11—H11A119.7
C6—C1—C7120.59 (12)C10—C11—H11A119.7
C2—C1—C7119.44 (13)C12—C13—C14120.58 (15)
N1—C8—C9113.61 (10)C12—C13—H13A119.7
N1—C8—H8A108.8C14—C13—H13A119.7
C9—C8—H8A108.8C13—C12—C11119.04 (15)
N1—C8—H8B108.8C13—C12—H12A120.5
C9—C8—H8B108.8C11—C12—H12A120.5
H8A—C8—H8B107.7C4—C5—C6120.84 (15)
N1—C7—C1126.95 (13)C4—C5—H5A119.6
N1—C7—H7A116.5C6—C5—H5A119.6
C1—C7—H7A116.5C3—C15—H15A109.5
C9—C14—C13120.66 (13)C3—C15—H15B109.5
C9—C14—H14A119.7H15A—C15—H15B109.5
C13—C14—H14A119.7C3—C15—H15C109.5
C3—C2—C1122.15 (15)H15A—C15—H15C109.5
C3—C2—H2A118.9H15B—C15—H15C109.5
C1—C2—H2A118.9
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Co(C15H14NO)2]
Mr507.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.735 (3), 10.625 (2), 8.7926 (17)
β (°) 107.394 (2)
V3)1224.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.37 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.765, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
10315, 2807, 2404
Rint0.022
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.080, 1.08
No. of reflections2807
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O11.8259 (11)Co1—N11.9258 (11)
O1i—Co1—O1180.0O1—Co1—N193.01 (5)
O1i—Co1—N186.99 (5)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

We are grateful to the Starting Fund for the Doctoral Program of Xi'an University of Architecture and Technology (grant No. RC0737) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRodriguez Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205–207.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds