organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Chloro-2-methyl-6-(N-methyl­car­bam­oyl)phen­yl]-1-(3-chloro-2-pyrid­yl)-3-tri­fluoro­meth­yl-1H-pyrazole-5-carboxamide

aAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: libin1@sinochem.com

(Received 8 August 2008; accepted 16 November 2008; online 20 November 2008)

In the title compound, C19H14Cl2F3N5O2, which shows insecticidal activity, the dihedral angle between the pyrazole and pyridine rings is 68.15 (16)°. In the crystal structure, the mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds and an intra­molecular N—H⋯O inter­action also occurs. The F atoms of the –CF3 group are disordered over two sets of sites in a 0.800 (8):0.200 (8) ratio.

Related literature

For the synthesis and background to the insecticidal properties of the title compound, see: Lahm et al. (2003[Lahm, G. P., Selby, T. P. & Stevenson, T. M. (2003). International Patent Number WO 03/015 519.], 2005[Lahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. M., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898-4906.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14Cl2F3N5O2

  • Mr = 472.25

  • Orthorhombic, F d d 2

  • a = 26.4612 (16) Å

  • b = 32.8657 (19) Å

  • c = 9.4679 (6) Å

  • V = 8233.9 (9) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 (2) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.937

  • 10439 measured reflections

  • 3565 independent reflections

  • 3284 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.04

  • 3565 reflections

  • 310 parameters

  • 49 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1621 Friedel pairs

  • Flack parameter: −0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2 0.86 2.37 2.673 (3) 101
N4—H4⋯O2i 0.86 2.25 3.107 (3) 176
N5—H5⋯O1ii 0.86 2.16 2.915 (3) 146
C8—H8⋯O2i 0.93 2.50 3.168 (4) 129
Symmetry codes: (i) -x+1, -y+2, z; (ii) [x+{\script{1\over 4}}, -y+{\script{7\over 4}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Anthranilamide compounds containing an N-pyridyl pyrazole grouping are a new class of inseticides showing potent activity against a broad spectrum of Lepidoptera and no-cross resistance to existing insecticides (Lahm et al., 2003) and their mode of action has been been established (Lahm et al., 2005). Anthranilamides show little effect on mammalian ryanodine receptors and as a result they show excellent insect versus mammalian selectivity. As part of our studies in this area, we now report the crystal structures of the title compound, (I), (Fig. 1) which possesses high insecticidal activity.

The pyrazole ring and pyridine rings are not coplanar, the dihedral angle formed by the least-squares planes of the rings being equal to 68.15 (16)°. The dihedral angle between the mean plane of the pyrazole ring and the plane of the C10/O1/N4 group is 23.4 (2)° and the dihedral angle between the mean plane of the phenyl ring and the plane of the C10/O1/N4 group is 59.9 (2)°.

An intramolecular N—H···O hydrogen bond (Table 1) is observed, which helps to establish the molecular conformation. Intermolecular N—H···O and C—H···O bonds result in a three-dimensional network.

Related literature top

For the synthesis and background to the insecticidal properties of the title compound, see: Lahm et al. (2003, 2005).

Experimental top

The title compound was prepared by the literature method (Lahm et al., 2003). The crude products were purified by silica-gel column chromatography and then grown from acetone to afford colourless blocks of (I).

Anal. Calcd for C12H14N4O3: C, 48.32; H, 2.99; N, 14.83. Found: C, 48.47; H, 3.04; N, 14.66. 1H NMR(CDCl3): 2.19 (s, 3H, CH3), 2.70 (d, J=4.5 Hz, 3H, CH3), 7.30–7.31 (m, 2H, Ph), 7.57 (dd, 1H), 8.05 (d, J=8.1 Hz, 1H), 8.22 (br s, J=4.5 Hz, 1H, NH), 8.46 (d, J=4.8 Hz, 1H), 7.64 (s, 1H), 10.43 (s, 1H, NH).

Refinement top

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96Å and N—H distances of 0.86 Å, andincluded in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C). The F atoms of the -CF3 are disordered over two sets of sites in a 0.800 (8):0.200 (8) ratio.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-[4-Chloro-2-methyl-6-(N-methylcarbamoyl)phenyl]-1-(3-chloro-2- pyridyl)-3-trifluoromethyl-1H-pyrazole-5-carboxamide top
Crystal data top
C19H14Cl2F3N5O2Dx = 1.524 Mg m3
Mr = 472.25Melting point: 492(1) K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
a = 26.4612 (16) ÅCell parameters from 3952 reflections
b = 32.8657 (19) Åθ = 2.4–23.9°
c = 9.4679 (6) ŵ = 0.37 mm1
V = 8233.9 (9) Å3T = 296 K
Z = 16Block, colourless
F(000) = 38400.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
3565 independent reflections
Radiation source: fine-focus sealed tube3284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3124
Tmin = 0.917, Tmax = 0.937k = 3438
10439 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0387P)2 + 8.8659P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3565 reflectionsΔρmax = 0.18 e Å3
310 parametersΔρmin = 0.20 e Å3
49 restraintsAbsolute structure: Flack (1983), 1621 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C19H14Cl2F3N5O2V = 8233.9 (9) Å3
Mr = 472.25Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 26.4612 (16) ŵ = 0.37 mm1
b = 32.8657 (19) ÅT = 296 K
c = 9.4679 (6) Å0.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
3565 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3284 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.937Rint = 0.021
10439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.18 e Å3
S = 1.04Δρmin = 0.20 e Å3
3565 reflectionsAbsolute structure: Flack (1983), 1621 Friedel pairs
310 parametersAbsolute structure parameter: 0.01 (7)
49 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.28309 (3)1.00598 (3)0.40561 (10)0.0647 (3)
Cl20.46782 (4)0.85540 (5)0.17854 (12)0.1075 (5)
F10.39895 (14)1.06805 (12)0.8595 (6)0.1059 (17)0.800 (8)
F20.4312 (2)1.01859 (14)0.9614 (4)0.1148 (18)0.800 (8)
F30.47071 (12)1.04708 (16)0.7981 (5)0.0958 (15)0.800 (8)
F1'0.4028 (5)1.0381 (5)0.9535 (11)0.074 (4)0.200 (8)
F2'0.4714 (4)1.0263 (5)0.8653 (18)0.087 (5)0.200 (8)
F3'0.4283 (7)1.0724 (3)0.7878 (16)0.106 (6)0.200 (8)
O10.36097 (7)0.91496 (6)0.4022 (2)0.0453 (5)
O20.52136 (8)0.96046 (6)0.3535 (3)0.0576 (6)
N10.35642 (9)0.99358 (8)0.7518 (3)0.0445 (6)
N20.34753 (8)0.97021 (6)0.6376 (2)0.0360 (5)
N30.28654 (9)0.92344 (8)0.7109 (3)0.0479 (6)
N40.42127 (8)0.95772 (6)0.3170 (2)0.0342 (5)
H40.43590.98080.32910.041*
N50.56488 (8)0.90701 (7)0.2779 (3)0.0419 (6)
H50.56720.88730.21860.050*
C10.26575 (11)0.96695 (9)0.5174 (3)0.0448 (7)
C20.21856 (11)0.94974 (11)0.5056 (4)0.0566 (9)
H20.19580.95870.43750.068*
C30.20605 (12)0.91908 (11)0.5966 (4)0.0602 (10)
H30.17470.90640.58990.072*
C40.23980 (14)0.90720 (10)0.6975 (4)0.0592 (9)
H4A0.23020.88690.76040.071*
C50.29811 (10)0.95245 (8)0.6209 (3)0.0379 (6)
C60.40279 (10)1.00776 (9)0.7321 (3)0.0434 (7)
C70.42585 (12)1.03518 (11)0.8368 (4)0.0596 (9)
C80.42392 (10)0.99401 (9)0.6056 (3)0.0429 (7)
H80.45581.00000.56950.052*
C90.38752 (10)0.96987 (8)0.5464 (3)0.0346 (6)
C100.38824 (9)0.94496 (7)0.4152 (3)0.0329 (6)
C110.43316 (10)0.93476 (7)0.1941 (3)0.0323 (6)
C120.48281 (9)0.92011 (7)0.1738 (3)0.0319 (6)
C130.49293 (10)0.89622 (9)0.0565 (3)0.0415 (6)
H130.52540.88640.04100.050*
C140.45484 (12)0.88718 (10)0.0367 (3)0.0534 (8)
C150.40693 (11)0.90324 (10)0.0207 (3)0.0507 (8)
H150.38220.89760.08750.061*
C160.39557 (10)0.92751 (9)0.0935 (3)0.0401 (6)
C170.34412 (11)0.94686 (11)0.1030 (4)0.0565 (8)
H17A0.32900.94760.01080.085*
H17B0.34740.97410.13850.085*
H17C0.32320.93130.16560.085*
C180.52432 (10)0.93058 (8)0.2762 (3)0.0334 (6)
C190.60538 (12)0.91391 (11)0.3778 (4)0.0597 (9)
H19A0.62160.93940.35710.090*
H19B0.62960.89230.37080.090*
H19C0.59180.91470.47180.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0572 (5)0.0631 (5)0.0737 (6)0.0044 (4)0.0053 (4)0.0203 (5)
Cl20.0781 (7)0.1621 (12)0.0821 (8)0.0360 (7)0.0273 (6)0.0839 (8)
F10.090 (2)0.090 (2)0.137 (3)0.0050 (19)0.020 (2)0.063 (2)
F20.168 (4)0.117 (3)0.059 (2)0.042 (3)0.040 (2)0.0052 (18)
F30.067 (2)0.132 (3)0.088 (3)0.0499 (19)0.0139 (17)0.043 (2)
F1'0.067 (6)0.095 (6)0.060 (6)0.014 (5)0.009 (4)0.021 (5)
F2'0.072 (6)0.094 (6)0.094 (7)0.004 (5)0.017 (5)0.018 (5)
F3'0.121 (8)0.094 (7)0.103 (7)0.008 (5)0.014 (5)0.004 (5)
O10.0485 (11)0.0440 (11)0.0433 (11)0.0146 (9)0.0108 (10)0.0005 (9)
O20.0434 (12)0.0537 (12)0.0757 (17)0.0105 (10)0.0185 (11)0.0324 (12)
N10.0407 (13)0.0564 (15)0.0365 (13)0.0054 (11)0.0038 (10)0.0095 (11)
N20.0312 (11)0.0441 (12)0.0326 (12)0.0019 (9)0.0043 (9)0.0051 (10)
N30.0511 (15)0.0500 (14)0.0426 (14)0.0052 (12)0.0153 (11)0.0014 (12)
N40.0332 (11)0.0331 (11)0.0364 (13)0.0044 (9)0.0052 (10)0.0030 (10)
N50.0347 (12)0.0433 (13)0.0478 (14)0.0065 (10)0.0059 (10)0.0128 (11)
C10.0378 (16)0.0472 (16)0.0492 (18)0.0027 (13)0.0053 (13)0.0069 (14)
C20.0356 (17)0.067 (2)0.067 (2)0.0003 (15)0.0020 (16)0.0149 (18)
C30.0381 (17)0.068 (2)0.075 (2)0.0137 (16)0.0124 (17)0.022 (2)
C40.065 (2)0.0553 (19)0.058 (2)0.0176 (17)0.0271 (17)0.0078 (16)
C50.0335 (14)0.0422 (15)0.0380 (16)0.0023 (11)0.0100 (12)0.0074 (12)
C60.0380 (16)0.0545 (17)0.0376 (16)0.0054 (13)0.0001 (12)0.0042 (13)
C70.0503 (19)0.077 (2)0.052 (2)0.0108 (18)0.0062 (16)0.0155 (18)
C80.0326 (14)0.0557 (17)0.0405 (16)0.0058 (13)0.0051 (12)0.0010 (13)
C90.0337 (14)0.0392 (14)0.0307 (13)0.0022 (11)0.0021 (11)0.0020 (11)
C100.0288 (13)0.0351 (13)0.0347 (14)0.0006 (11)0.0028 (11)0.0050 (11)
C110.0330 (13)0.0329 (13)0.0310 (14)0.0043 (11)0.0016 (11)0.0042 (10)
C120.0314 (13)0.0310 (12)0.0333 (14)0.0044 (10)0.0008 (11)0.0008 (11)
C130.0357 (14)0.0499 (16)0.0391 (15)0.0027 (12)0.0002 (12)0.0068 (13)
C140.0502 (18)0.069 (2)0.0405 (17)0.0035 (16)0.0066 (13)0.0218 (16)
C150.0422 (17)0.071 (2)0.0392 (17)0.0054 (15)0.0108 (13)0.0092 (16)
C160.0319 (14)0.0501 (16)0.0383 (16)0.0040 (12)0.0012 (11)0.0034 (13)
C170.0365 (15)0.085 (2)0.0481 (19)0.0068 (16)0.0051 (14)0.0040 (16)
C180.0335 (14)0.0308 (13)0.0359 (15)0.0015 (11)0.0003 (11)0.0020 (11)
C190.0393 (17)0.073 (2)0.067 (2)0.0107 (15)0.0141 (15)0.0186 (19)
Geometric parameters (Å, º) top
Cl1—C11.725 (3)C2—H20.9300
Cl2—C141.736 (3)C3—C41.365 (5)
F1—C71.311 (4)C3—H30.9300
F2—C71.307 (4)C4—H4A0.9300
F3—C71.303 (4)C6—C81.397 (4)
F1'—C71.266 (8)C6—C71.472 (4)
F2'—C71.269 (8)C8—C91.368 (4)
F3'—C71.310 (8)C8—H80.9300
O1—C101.228 (3)C9—C101.488 (4)
O2—C181.227 (3)C11—C161.397 (4)
N1—C61.326 (4)C11—C121.412 (4)
N1—N21.347 (3)C12—C131.387 (4)
N2—C91.366 (3)C12—C181.505 (3)
N2—C51.441 (3)C13—C141.372 (4)
N3—C51.315 (4)C13—H130.9300
N3—C41.353 (4)C14—C151.382 (4)
N4—C101.343 (3)C15—C161.377 (4)
N4—C111.423 (3)C15—H150.9300
N4—H40.8600C16—C171.505 (4)
N5—C181.324 (3)C17—H17A0.9600
N5—C191.447 (4)C17—H17B0.9600
N5—H50.8600C17—H17C0.9600
C1—C21.375 (4)C19—H19A0.9600
C1—C51.386 (4)C19—H19B0.9600
C2—C31.367 (5)C19—H19C0.9600
C6—N1—N2104.4 (2)F3—C7—C6111.8 (3)
N1—N2—C9112.1 (2)F2—C7—C6113.4 (3)
N1—N2—C5118.5 (2)F3'—C7—C6110.7 (7)
C9—N2—C5129.1 (2)F1—C7—C6112.9 (3)
C5—N3—C4116.0 (3)C9—C8—C6104.9 (2)
C10—N4—C11123.0 (2)C9—C8—H8127.5
C10—N4—H4118.5C6—C8—H8127.5
C11—N4—H4118.5N2—C9—C8106.3 (2)
C18—N5—C19121.1 (2)N2—C9—C10122.9 (2)
C18—N5—H5119.5C8—C9—C10130.7 (2)
C19—N5—H5119.5O1—C10—N4124.3 (2)
C2—C1—C5118.5 (3)O1—C10—C9121.2 (2)
C2—C1—Cl1119.8 (3)N4—C10—C9114.5 (2)
C5—C1—Cl1121.7 (2)C16—C11—C12120.8 (2)
C3—C2—C1118.1 (3)C16—C11—N4119.4 (2)
C3—C2—H2120.9C12—C11—N4119.8 (2)
C1—C2—H2120.9C13—C12—C11118.8 (2)
C4—C3—C2119.6 (3)C13—C12—C18120.3 (2)
C4—C3—H3120.2C11—C12—C18120.9 (2)
C2—C3—H3120.2C14—C13—C12119.7 (3)
N3—C4—C3123.4 (3)C14—C13—H13120.1
N3—C4—H4A118.3C12—C13—H13120.1
C3—C4—H4A118.3C13—C14—C15121.4 (3)
N3—C5—C1124.3 (3)C13—C14—Cl2118.8 (2)
N3—C5—N2115.7 (3)C15—C14—Cl2119.8 (2)
C1—C5—N2119.9 (2)C16—C15—C14120.5 (3)
N1—C6—C8112.2 (3)C16—C15—H15119.7
N1—C6—C7120.2 (3)C14—C15—H15119.7
C8—C6—C7127.6 (3)C15—C16—C11118.6 (3)
F1'—C7—F2'106.9 (8)C15—C16—C17119.3 (3)
F1'—C7—F3131.5 (6)C11—C16—C17122.1 (3)
F2'—C7—F342.6 (7)C16—C17—H17A109.5
F1'—C7—F245.3 (7)C16—C17—H17B109.5
F2'—C7—F267.0 (8)H17A—C17—H17B109.5
F3—C7—F2106.3 (4)C16—C17—H17C109.5
F1'—C7—F3'105.2 (8)H17A—C17—H17C109.5
F2'—C7—F3'104.1 (8)H17B—C17—H17C109.5
F3—C7—F3'64.8 (8)O2—C18—N5120.9 (2)
F2—C7—F3'134.7 (7)O2—C18—C12121.4 (2)
F1'—C7—F162.1 (7)N5—C18—C12117.7 (2)
F2'—C7—F1132.1 (7)N5—C19—H19A109.5
F3—C7—F1107.1 (4)N5—C19—H19B109.5
F2—C7—F1104.8 (4)H19A—C19—H19B109.5
F3'—C7—F146.8 (8)N5—C19—H19C109.5
F1'—C7—C6115.8 (6)H19A—C19—H19C109.5
F2'—C7—C6113.3 (7)H19B—C19—H19C109.5
C6—N1—N2—C90.5 (3)N1—N2—C9—C10177.2 (2)
C6—N1—N2—C5175.3 (2)C5—N2—C9—C108.7 (4)
C5—C1—C2—C30.1 (4)C6—C8—C9—N20.2 (3)
Cl1—C1—C2—C3179.5 (3)C6—C8—C9—C10176.6 (3)
C1—C2—C3—C41.5 (5)C11—N4—C10—O18.6 (4)
C5—N3—C4—C31.0 (4)C11—N4—C10—C9170.3 (2)
C2—C3—C4—N32.0 (5)N2—C9—C10—O122.0 (4)
C4—N3—C5—C10.5 (4)C8—C9—C10—O1154.0 (3)
C4—N3—C5—N2178.7 (2)N2—C9—C10—N4159.1 (2)
C2—C1—C5—N31.0 (4)C8—C9—C10—N424.9 (4)
Cl1—C1—C5—N3178.5 (2)C10—N4—C11—C1664.7 (3)
C2—C1—C5—N2179.1 (3)C10—N4—C11—C12116.2 (3)
Cl1—C1—C5—N20.4 (4)C16—C11—C12—C133.9 (4)
N1—N2—C5—N369.8 (3)N4—C11—C12—C13177.1 (2)
C9—N2—C5—N3116.4 (3)C16—C11—C12—C18175.2 (2)
N1—N2—C5—C1108.4 (3)N4—C11—C12—C183.8 (3)
C9—N2—C5—C165.4 (4)C11—C12—C13—C140.3 (4)
N2—N1—C6—C80.4 (3)C18—C12—C13—C14179.4 (3)
N2—N1—C6—C7179.6 (3)C12—C13—C14—C153.7 (5)
N1—C6—C7—F1'11.8 (10)C12—C13—C14—Cl2177.2 (2)
C8—C6—C7—F1'169.1 (10)C13—C14—C15—C162.8 (5)
N1—C6—C7—F2'135.8 (10)Cl2—C14—C15—C16178.0 (3)
C8—C6—C7—F2'45.1 (11)C14—C15—C16—C111.4 (4)
N1—C6—C7—F3177.9 (4)C14—C15—C16—C17175.9 (3)
C8—C6—C7—F31.1 (6)C12—C11—C16—C154.7 (4)
N1—C6—C7—F261.9 (5)N4—C11—C16—C15176.2 (2)
C8—C6—C7—F2119.0 (5)C12—C11—C16—C17172.5 (3)
N1—C6—C7—F3'107.7 (10)N4—C11—C16—C176.6 (4)
C8—C6—C7—F3'71.4 (11)C19—N5—C18—O24.6 (4)
N1—C6—C7—F157.1 (5)C19—N5—C18—C12177.1 (3)
C8—C6—C7—F1122.0 (4)C13—C12—C18—O2157.4 (3)
N1—C6—C8—C90.2 (3)C11—C12—C18—O221.8 (4)
C7—C6—C8—C9179.3 (3)C13—C12—C18—N521.0 (4)
N1—N2—C9—C80.4 (3)C11—C12—C18—N5159.9 (2)
C5—N2—C9—C8174.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O20.862.372.673 (3)101
N4—H4···O2i0.862.253.107 (3)176
N5—H5···O1ii0.862.162.915 (3)146
C8—H8···O2i0.932.503.168 (4)129
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/4, y+7/4, z1/4.

Experimental details

Crystal data
Chemical formulaC19H14Cl2F3N5O2
Mr472.25
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)26.4612 (16), 32.8657 (19), 9.4679 (6)
V3)8233.9 (9)
Z16
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.917, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
10439, 3565, 3284
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.04
No. of reflections3565
No. of parameters310
No. of restraints49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 1621 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O20.862.372.673 (3)101
N4—H4···O2i0.862.253.107 (3)176
N5—H5···O1ii0.862.162.915 (3)146
C8—H8···O2i0.932.503.168 (4)129
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/4, y+7/4, z1/4.
 

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. M., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898–4906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLahm, G. P., Selby, T. P. & Stevenson, T. M. (2003). International Patent Number WO 03/015 519.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds