organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hydr­­oxy-3,4-di­meth­oxy­phen­yl)-2-(4-meth­oxy­phen­yl)ethanone

aCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 19 October 2008; accepted 6 November 2008; online 13 November 2008)

In the title compound, C17H18O5, the pyrogallol group is almost coplanar with the mean plane of the attached carbonyl group [dihedral angle of 1.95 (13)°] and makes a dihedral angle of 56.01 (10)° with the other benzene ring. Of the three meth­oxy groups, only one is significantly twisted relative to its attached benzene ring [C—O—C—C torsion angles of 4.0 (5), 3.9 (6) and −106.3 (4)°]. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds help to establish the conformation, and the packing is consolidated by C—H⋯O inter­actions and ππ stacking interactions [centroid–centroid separation = 3.735 (2) Å].

Related literature

For background on the properties of deoxy­benzoins, see: Kiuchi et al. (1990[Kiuchi, F., Chen, X. & Tsuda, Y. (1990). Heterocycles, 31, 629-36.]); Li et al. (2008[Li, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662-667.]); Niwa et al. (1999[Niwa, K., Hashimoto, M., Morishita, S., Yokoyama, Y., Mori, H. & Tamaya, T. (1999). J. Cancer Res. 90, 726-32.]); Papoutsi et al. (2007[Papoutsi, Z., Kassi, E., Fokialakis, N., Mitakou, S., Lambrinidis, G., Mikros, E. & Moutsatsou, P. (2007). Steroids, 72, 693-704.]); Parmar et al. (1996[Parmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A. & Pati, H. N. (1996). Indian J. Chem. Sect. B, 35, 220-232.]); Sanduja et al. (1985[Sanduja, R., Weinheimer, A. J. & Alam, M. (1985). J. Chem. Res. Synop. pp. 56-57.]); Xiao et al. (2008[Xiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008). Synth. Commun. 38, 525-529.]); Xiao, Fang et al. (2007[Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951-957.]); Xiao, Shi et al. (2007[Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703-3710.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18O5

  • Mr = 302.31

  • Monoclinic, P 21 /c

  • a = 14.431 (3) Å

  • b = 14.073 (3) Å

  • c = 7.4610 (15) Å

  • β = 92.86 (3)°

  • V = 1513.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.971

  • 2893 measured reflections

  • 2667 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.215

  • S = 1.03

  • 2667 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H18⋯O1 0.89 (4) 1.78 (4) 2.583 (4) 148 (4)
C15—H15A⋯O2 0.96 2.56 3.086 (5) 115
C11—H11⋯O3i 0.93 2.51 3.259 (4) 138
C17—H17B⋯O4ii 0.96 2.59 3.315 (6) 133
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Deoxybenzoins are intermediates in the synthesis of isoflavones (Xiao et al., 2008; Xiao, Fang et al., 2007) and found in several plants, such as Glycyrrhiza sp., Trifolium subterraneum and Ononis spinosa, and marine sources (Kiuchi et al., 1990; Niwa et al., 1999; Sanduja et al., 1985). Many of the deoxybenzoins have shown quite significant estrogen receptor modulatory, urease inhibitory, antimicrobial and antiviral properties (Papoutsi et al., 2007; Xiao, Shi et al., 2007; Parmar et al., 1996; Li et al., 2008). Consequently, we have synthesized a series of deoxybenzoins for bioactivity screen.

The bond lengths and angles of the title compound, (I), are unexceptional. The carbonyl group is almost coplanar with the pyrogallol fragment with a dihedral angle of 1.95 (13) °. The C16—O4—C4—C5 torsion angle [4.0 (5) °] indicates that the methoxy group is coplanar with the attached phenyl ring (pyrogallol fragment), the same as the methoxy group (O5, C17) attached to the p-methoxyphenyl moiety. However, the C15—O3—C3—C4 torsion angle indicates that the methoxy group is twisted at -106.3 (4) ° with respect to the pyrogallol ring.

The molecule of (I) is stabilized by intramolecular O—H···O and C—H···O hydrogen bonds (Table 1). The six-membered pseudo-ring closed by the former bond is almost planar with mean deviation of 0.010Å and coplanar with the fused C1—C6 benzene ring (Fig. 1). The packing is stabilized by intermolecular C—H···O hydrogen bonds as well as weak π-π interactions with a centroid-to-centroid distance of 3.735 (2)Å.

Related literature top

For background on the properties of deoxybenzoins, see: Kiuchi et al. (1990); Li et al. (2008); Niwa et al. (1999); Papoutsi et al. (2007); Parmar et al. (1996); Sanduja et al. (1985); Xiao et al. (2008); Xiao, Fang et al. (2007); Xiao, Shi et al. (2007).

Experimental top

4-Methoxyphenacetyl chloride was prepared by treating 4-methoxyphenacetic acid with thionyl chloride at room temperature for 24 h. The solvent was removed in vacuo. To a mixture of pyrogallol trimethoxyl ether (2 g, 11.9 mmol) and 4-methoxyphenacetyl chloride (2.3 g, 12.2 mmol) in dried carbon disulfide (4 ml) was added anhydrous aluminium chloride (2.8 g) with stirring at room temperature overnight. Then the mixture was heated under reflux for 0.5 h. After removal of the solvent by decantation, the residue was poured into ice-cold diluted hydrochloric acid. The precipitate was suction filtered and crystallized from methanol to furnish light yellow blocks of (I).

Refinement top

The H atom bonded to O2 was located in a difference Fourier map and freely refined. All other H atoms were placed in geometrically idealized positions (C—H = 0.93-0.97Å) and refined as riding with Uiso = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone top
Crystal data top
C17H18O5F(000) = 640
Mr = 302.31Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1217 reflections
a = 14.431 (3) Åθ = 1.6–24.7°
b = 14.073 (3) ŵ = 0.10 mm1
c = 7.4610 (15) ÅT = 293 K
β = 92.86 (3)°Block, light-yellow
V = 1513.3 (5) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2667 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω/2θ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: ψ scan
(North et al., 1968)
h = 1717
Tmin = 0.971, Tmax = 0.971k = 160
2893 measured reflectionsl = 08
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: difmap and geom
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1231P)2]
where P = (Fo2 + 2Fc2)/3
2667 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C17H18O5V = 1513.3 (5) Å3
Mr = 302.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.431 (3) ŵ = 0.10 mm1
b = 14.073 (3) ÅT = 293 K
c = 7.4610 (15) Å0.30 × 0.30 × 0.30 mm
β = 92.86 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2667 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1543 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.971Rint = 0.059
2893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
2667 reflectionsΔρmin = 0.35 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4333 (2)0.7518 (2)1.0256 (5)0.0384 (8)
C20.3890 (2)0.6623 (2)1.0334 (4)0.0379 (8)
C30.2979 (2)0.6555 (2)1.0813 (4)0.0391 (8)
C40.2496 (2)0.7362 (2)1.1277 (4)0.0399 (9)
C50.2918 (2)0.8252 (2)1.1218 (4)0.0396 (8)
H50.25950.87961.15190.048*
C60.3819 (2)0.8313 (2)1.0709 (5)0.0431 (9)
H60.40970.89091.06660.052*
C70.6747 (2)0.8578 (2)0.9220 (5)0.0401 (9)
C80.7407 (3)0.8069 (3)1.0250 (5)0.0504 (10)
H80.72160.76801.11700.060*
C90.8331 (3)0.8129 (3)0.9935 (5)0.0562 (11)
H90.87580.77711.06210.067*
C100.8632 (2)0.8713 (3)0.8614 (6)0.0486 (10)
C110.7995 (3)0.9231 (3)0.7578 (5)0.0468 (9)
H110.81910.96280.66740.056*
C120.7062 (3)0.9155 (2)0.7898 (5)0.0442 (9)
H120.66350.95060.71960.053*
C130.5738 (2)0.8556 (3)0.9633 (5)0.0488 (10)
H13A0.53970.89400.87430.059*
H13B0.56720.88581.07890.059*
C140.5283 (2)0.7592 (2)0.9682 (4)0.0398 (9)
C150.2723 (3)0.5045 (3)1.2103 (6)0.0663 (12)
H15A0.33830.49671.22600.100*
H15B0.24410.44441.18070.100*
H15C0.24830.52811.31940.100*
C160.1069 (3)0.8046 (3)1.2136 (6)0.0631 (12)
H16A0.13650.83981.31070.095*
H16B0.04640.78491.24640.095*
H16C0.10120.84401.10860.095*
C170.9921 (4)0.9345 (4)0.7095 (9)0.101 (2)
H17A0.96330.92060.59380.152*
H17B1.05800.92600.70570.152*
H17C0.97900.99910.74120.152*
O10.57164 (18)0.68781 (18)0.9225 (4)0.0543 (8)
O20.4326 (2)0.58075 (17)0.9921 (4)0.0499 (7)
O30.25205 (18)0.56972 (17)1.0703 (3)0.0511 (7)
O40.16164 (17)0.72248 (18)1.1765 (4)0.0517 (7)
O50.95673 (19)0.8722 (2)0.8396 (5)0.0760 (10)
H180.489 (3)0.597 (3)0.960 (6)0.063 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (19)0.0405 (19)0.0339 (19)0.0015 (16)0.0042 (15)0.0021 (15)
C20.050 (2)0.0317 (18)0.0310 (18)0.0016 (15)0.0098 (15)0.0011 (14)
C30.046 (2)0.0368 (19)0.0338 (19)0.0040 (16)0.0085 (15)0.0029 (15)
C40.040 (2)0.045 (2)0.0335 (19)0.0004 (16)0.0080 (15)0.0018 (16)
C50.043 (2)0.0360 (19)0.040 (2)0.0025 (15)0.0019 (16)0.0027 (15)
C60.053 (2)0.0343 (19)0.042 (2)0.0029 (16)0.0027 (17)0.0033 (16)
C70.045 (2)0.0362 (18)0.039 (2)0.0011 (16)0.0019 (16)0.0038 (16)
C80.054 (2)0.052 (2)0.044 (2)0.0035 (19)0.0015 (18)0.0173 (18)
C90.052 (2)0.058 (2)0.057 (3)0.0054 (19)0.0058 (19)0.019 (2)
C100.041 (2)0.040 (2)0.066 (3)0.0021 (17)0.0118 (19)0.0042 (19)
C110.055 (2)0.040 (2)0.046 (2)0.0043 (18)0.0107 (18)0.0073 (17)
C120.053 (2)0.0353 (19)0.044 (2)0.0051 (17)0.0011 (17)0.0024 (16)
C130.046 (2)0.045 (2)0.056 (2)0.0046 (18)0.0009 (18)0.0055 (19)
C140.046 (2)0.042 (2)0.0307 (19)0.0023 (16)0.0067 (15)0.0015 (16)
C150.087 (3)0.048 (2)0.063 (3)0.012 (2)0.004 (2)0.011 (2)
C160.045 (2)0.063 (3)0.081 (3)0.006 (2)0.001 (2)0.001 (2)
C170.065 (3)0.081 (4)0.162 (6)0.008 (3)0.047 (4)0.047 (4)
O10.0498 (16)0.0450 (15)0.0682 (19)0.0002 (12)0.0049 (13)0.0119 (13)
O20.0490 (17)0.0357 (14)0.0643 (18)0.0020 (12)0.0038 (14)0.0076 (12)
O30.0600 (17)0.0372 (14)0.0544 (17)0.0103 (12)0.0131 (12)0.0028 (12)
O40.0407 (15)0.0497 (15)0.0645 (18)0.0039 (12)0.0017 (12)0.0010 (13)
O50.0485 (18)0.075 (2)0.106 (3)0.0105 (16)0.0207 (16)0.0276 (19)
Geometric parameters (Å, º) top
C1—C61.393 (5)C11—C121.383 (5)
C1—C21.415 (5)C11—H110.9300
C1—C141.461 (5)C12—H120.9300
C2—O21.351 (4)C13—C141.509 (5)
C2—C31.383 (5)C13—H13A0.9700
C3—O31.378 (4)C13—H13B0.9700
C3—C41.386 (5)C14—O11.240 (4)
C4—O41.352 (4)C15—O31.410 (5)
C4—C51.394 (5)C15—H15A0.9600
C5—C61.376 (5)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300C16—O41.434 (5)
C7—C121.372 (5)C16—H16A0.9600
C7—C81.393 (5)C16—H16B0.9600
C7—C131.505 (5)C16—H16C0.9600
C8—C91.368 (5)C17—O51.422 (5)
C8—H80.9300C17—H17A0.9600
C9—C101.370 (5)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C10—O51.368 (4)O2—H180.89 (4)
C10—C111.380 (5)
C6—C1—C2117.3 (3)C7—C12—H12119.0
C6—C1—C14122.2 (3)C11—C12—H12119.0
C2—C1—C14120.5 (3)C7—C13—C14116.8 (3)
O2—C2—C3117.4 (3)C7—C13—H13A108.1
O2—C2—C1122.1 (3)C14—C13—H13A108.1
C3—C2—C1120.5 (3)C7—C13—H13B108.1
O3—C3—C2120.3 (3)C14—C13—H13B108.1
O3—C3—C4119.1 (3)H13A—C13—H13B107.3
C2—C3—C4120.4 (3)O1—C14—C1121.1 (3)
O4—C4—C3116.2 (3)O1—C14—C13119.8 (3)
O4—C4—C5123.7 (3)C1—C14—C13119.1 (3)
C3—C4—C5120.1 (3)O3—C15—H15A109.5
C6—C5—C4119.0 (3)O3—C15—H15B109.5
C6—C5—H5120.5H15A—C15—H15B109.5
C4—C5—H5120.5O3—C15—H15C109.5
C5—C6—C1122.6 (3)H15A—C15—H15C109.5
C5—C6—H6118.7H15B—C15—H15C109.5
C1—C6—H6118.7O4—C16—H16A109.5
C12—C7—C8117.4 (3)O4—C16—H16B109.5
C12—C7—C13121.2 (3)H16A—C16—H16B109.5
C8—C7—C13121.3 (3)O4—C16—H16C109.5
C9—C8—C7121.2 (3)H16A—C16—H16C109.5
C9—C8—H8119.4H16B—C16—H16C109.5
C7—C8—H8119.4O5—C17—H17A109.5
C8—C9—C10120.5 (4)O5—C17—H17B109.5
C8—C9—H9119.7H17A—C17—H17B109.5
C10—C9—H9119.7O5—C17—H17C109.5
O5—C10—C9116.2 (3)H17A—C17—H17C109.5
O5—C10—C11124.2 (3)H17B—C17—H17C109.5
C9—C10—C11119.6 (3)C2—O2—H18107 (3)
C10—C11—C12119.3 (3)C3—O3—C15116.4 (3)
C10—C11—H11120.3C4—O4—C16118.1 (3)
C12—C11—H11120.3C10—O5—C17118.5 (3)
C7—C12—C11122.0 (3)
C6—C1—C2—O2180.0 (3)C8—C9—C10—C111.1 (6)
C14—C1—C2—O21.3 (5)O5—C10—C11—C12178.9 (4)
C6—C1—C2—C31.1 (5)C9—C10—C11—C120.3 (6)
C14—C1—C2—C3177.6 (3)C8—C7—C12—C110.4 (5)
O2—C2—C3—O35.9 (5)C13—C7—C12—C11175.7 (3)
C1—C2—C3—O3173.0 (3)C10—C11—C12—C70.0 (6)
O2—C2—C3—C4179.1 (3)C12—C7—C13—C14128.6 (4)
C1—C2—C3—C42.0 (5)C8—C7—C13—C1456.2 (5)
O3—C3—C4—O46.4 (4)C6—C1—C14—O1177.5 (3)
C2—C3—C4—O4178.6 (3)C2—C1—C14—O11.2 (5)
O3—C3—C4—C5173.4 (3)C6—C1—C14—C132.0 (5)
C2—C3—C4—C51.7 (5)C2—C1—C14—C13179.3 (3)
O4—C4—C5—C6179.7 (3)C7—C13—C14—O16.7 (5)
C3—C4—C5—C60.5 (5)C7—C13—C14—C1173.8 (3)
C4—C5—C6—C10.3 (5)C2—C3—O3—C1578.6 (4)
C2—C1—C6—C50.0 (5)C4—C3—O3—C15106.3 (4)
C14—C1—C6—C5178.7 (3)C3—C4—O4—C16175.8 (3)
C12—C7—C8—C91.1 (6)C5—C4—O4—C164.0 (5)
C13—C7—C8—C9176.5 (4)C9—C10—O5—C17177.4 (4)
C7—C8—C9—C101.5 (6)C11—C10—O5—C173.9 (6)
C8—C9—C10—O5179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H18···O10.89 (4)1.78 (4)2.583 (4)148 (4)
C15—H15A···O20.962.563.086 (5)115
C11—H11···O3i0.932.513.259 (4)138
C17—H17B···O4ii0.962.593.315 (6)133
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18O5
Mr302.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.431 (3), 14.073 (3), 7.4610 (15)
β (°) 92.86 (3)
V3)1513.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2893, 2667, 1543
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.215, 1.03
No. of reflections2667
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H18···O10.89 (4)1.78 (4)2.583 (4)148 (4)
C15—H15A···O20.962.563.086 (5)115
C11—H11···O3i0.932.513.259 (4)138
C17—H17B···O4ii0.962.593.315 (6)133
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+3/2, z1/2.
 

Acknowledgements

The work was financed by a grant (No. JDKYZZ0801) from Jishou University for talent introduction, China.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKiuchi, F., Chen, X. & Tsuda, Y. (1990). Heterocycles, 31, 629–36.  CAS Google Scholar
First citationLi, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662–667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiwa, K., Hashimoto, M., Morishita, S., Yokoyama, Y., Mori, H. & Tamaya, T. (1999). J. Cancer Res. 90, 726–32.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPapoutsi, Z., Kassi, E., Fokialakis, N., Mitakou, S., Lambrinidis, G., Mikros, E. & Moutsatsou, P. (2007). Steroids, 72, 693–704.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A. & Pati, H. N. (1996). Indian J. Chem. Sect. B, 35, 220–232.  Google Scholar
First citationSanduja, R., Weinheimer, A. J. & Alam, M. (1985). J. Chem. Res. Synop. pp. 56–57.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008). Synth. Commun. 38, 525–529.  Web of Science CrossRef CAS Google Scholar
First citationXiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703–3710.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds