organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Di­hydroxy­phen­yl)-2-(4-fluoro­phen­yl)ethanone

aSchool of Chemical and Material Engineering, Jiangnan University, Lihu Road No. 1800 Wuxi, Wuxi 214122, People's Republic of China
*Correspondence e-mail: owengoal13@163.com

(Received 28 October 2008; accepted 31 October 2008; online 8 November 2008)

In the title compound, C14H11FO3, the dihedral angle between the aromatic rings is 69.11 (8)°. An intra­molecular O—H⋯O hydrogen bond is present. Inter­molecular O—H⋯O inter­actions help to establish the packing.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background on deoxy­benzoins, see: Li et al. (2007[Li, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361-1369.], 2008[Li, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662-667.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FO3

  • Mr = 246.23

  • Monoclinic, P 21 /c

  • a = 8.1640 (16) Å

  • b = 5.9120 (12) Å

  • c = 24.946 (6) Å

  • β = 105.33 (3)°

  • V = 1161.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.28 × 0.25 × 0.17 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.982

  • 2229 measured reflections

  • 2072 independent reflections

  • 1452 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.04

  • 2072 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.28 2.690 (2) 111
O1—H1A⋯O2i 0.82 2.16 2.876 (3) 146
O2—H2B⋯O3ii 0.82 1.92 2.744 (2) 178
Symmetry codes: (i) -x, -y, -z; (ii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Doxybenzion derivatives play an important role in organic chemistry (Li et al., 2007; Li et al., 2008). In the title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the least-squares planes of the two benzene rings is 69.11 (8) °. In the crystal, O—H···O hydrogen bonds (Table 1) help to establish the packing.

Related literature top

For bond-length data, see: Allen et al. (1987). For background on deoxybenzoins, see: Li et al. (2007, 2008).

Experimental top

Pyrocatechol (0.050 mol) and 2-(4-fluorophenyl)acetic acid (0.050 mol) were dissolved into freshly distilled BF3Et2O under argon. The mixture was stirred at room temperature and then poured in an ice bath. The resulting mixture was extracted with ethyl acetate, and the organic layer was washed with aq. dried (Na2S1O4), and evaporated. The white deposits precipitated were separated from the solvents by filtration. They were washed with aqueous saturated Na1H1C1O3 twice. The solid was dissolved in acetone (15 ml) and stirred for about 10 min to give a clear solution. After keeping the solution in air for 10 d, colorless blocks of (I) were formed at the bottom of the vesssl on slow evaporation of the solvent.They were collected, washed three times with acetone and dried in a vacuum desiccator using CaCl2. The compound was isolated in 90% yield.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H = 0.82Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
1-(3,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone top
Crystal data top
C14H11FO3F(000) = 512
Mr = 246.23Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.1640 (16) Åθ = 9–12°
b = 5.9120 (12) ŵ = 0.11 mm1
c = 24.946 (6) ÅT = 293 K
β = 105.33 (3)°Block, colorless
V = 1161.2 (4) Å30.28 × 0.25 × 0.17 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2072 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω/2θ scansθmax = 25.2°, θmin = 1.7°
Absorption correction: ψ scan
(North et al., 1968)
h = 90
Tmin = 0.970, Tmax = 0.982k = 70
2229 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.5485P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2072 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C14H11FO3V = 1161.2 (4) Å3
Mr = 246.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1640 (16) ŵ = 0.11 mm1
b = 5.9120 (12) ÅT = 293 K
c = 24.946 (6) Å0.28 × 0.25 × 0.17 mm
β = 105.33 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2072 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1452 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.982Rint = 0.030
2229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2072 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5159 (3)0.4835 (4)0.08518 (10)0.0502 (6)
C20.4714 (3)0.2980 (4)0.04986 (10)0.0536 (7)
H2A0.55440.22290.03740.064*
C30.3067 (3)0.2257 (4)0.03341 (11)0.0533 (6)
C40.1810 (3)0.3396 (4)0.05140 (10)0.0496 (6)
C50.2243 (3)0.5232 (5)0.08571 (11)0.0609 (7)
H5A0.14060.59900.09770.073*
C60.3901 (3)0.5969 (5)0.10269 (12)0.0622 (8)
H6A0.41770.72240.12580.075*
C70.6960 (3)0.5566 (4)0.10307 (10)0.0502 (6)
C80.7428 (3)0.7480 (5)0.14453 (12)0.0636 (8)
H8A0.69230.88620.12660.076*
H8B0.69230.71790.17490.076*
C90.9297 (3)0.7876 (4)0.16843 (10)0.0496 (6)
C101.0273 (3)0.6323 (4)0.20441 (11)0.0543 (7)
H10A0.97680.50080.21290.065*
C111.1974 (3)0.6678 (5)0.22796 (12)0.0614 (7)
H11A1.26200.56200.25220.074*
C121.2691 (3)0.8598 (5)0.21518 (13)0.0640 (8)
C131.1793 (4)1.0184 (5)0.17977 (13)0.0693 (8)
H13A1.23171.14860.17150.083*
C141.0083 (4)0.9806 (5)0.15645 (12)0.0624 (7)
H14A0.94501.08720.13220.075*
F11.4375 (2)0.8958 (4)0.23816 (10)0.1039 (7)
O10.2648 (2)0.0477 (4)0.00250 (10)0.0813 (7)
H1A0.17260.00350.00120.122*
O20.0199 (2)0.2558 (3)0.03311 (8)0.0615 (5)
H2B0.04210.31990.04930.092*
O30.8048 (2)0.4626 (3)0.08579 (8)0.0650 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (13)0.0574 (15)0.0503 (14)0.0101 (11)0.0126 (10)0.0043 (12)
C20.0470 (14)0.0553 (15)0.0637 (16)0.0095 (12)0.0240 (12)0.0087 (13)
C30.0513 (14)0.0511 (15)0.0610 (15)0.0044 (12)0.0208 (12)0.0110 (13)
C40.0426 (13)0.0552 (15)0.0528 (14)0.0084 (11)0.0157 (11)0.0012 (12)
C50.0429 (14)0.0747 (19)0.0676 (17)0.0135 (13)0.0190 (12)0.0202 (15)
C60.0477 (14)0.0707 (18)0.0689 (17)0.0087 (13)0.0169 (12)0.0199 (15)
C70.0424 (12)0.0580 (16)0.0503 (14)0.0099 (12)0.0127 (11)0.0033 (12)
C80.0495 (14)0.0680 (18)0.0720 (18)0.0114 (13)0.0139 (13)0.0164 (15)
C90.0475 (13)0.0477 (14)0.0550 (15)0.0049 (11)0.0163 (11)0.0086 (12)
C100.0524 (14)0.0447 (14)0.0690 (17)0.0029 (12)0.0216 (12)0.0032 (13)
C110.0513 (15)0.0593 (17)0.0721 (18)0.0063 (13)0.0137 (13)0.0068 (14)
C120.0458 (14)0.0609 (17)0.087 (2)0.0100 (13)0.0207 (14)0.0153 (16)
C130.075 (2)0.0485 (16)0.093 (2)0.0114 (15)0.0380 (17)0.0034 (16)
C140.0721 (18)0.0514 (16)0.0657 (18)0.0113 (14)0.0216 (14)0.0065 (14)
F10.0526 (10)0.0961 (14)0.157 (2)0.0212 (10)0.0171 (11)0.0227 (14)
O10.0564 (11)0.0761 (14)0.1190 (18)0.0081 (10)0.0364 (11)0.0460 (13)
O20.0454 (9)0.0655 (12)0.0780 (12)0.0031 (9)0.0241 (8)0.0133 (10)
O30.0458 (10)0.0736 (13)0.0791 (13)0.0107 (9)0.0226 (9)0.0201 (10)
Geometric parameters (Å, º) top
C1—C61.391 (3)C8—H8A0.9700
C1—C21.393 (3)C8—H8B0.9700
C1—C71.483 (3)C9—C141.380 (4)
C2—C31.366 (3)C9—C101.380 (3)
C2—H2A0.9300C10—C111.374 (3)
C3—O11.365 (3)C10—H10A0.9300
C3—C41.397 (3)C11—C121.354 (4)
C4—O21.366 (3)C11—H11A0.9300
C4—C51.369 (4)C12—F11.359 (3)
C5—C61.378 (3)C12—C131.362 (4)
C5—H5A0.9300C13—C141.381 (4)
C6—H6A0.9300C13—H13A0.9300
C7—O31.219 (3)C14—H14A0.9300
C7—C81.512 (4)O1—H1A0.8200
C8—C91.503 (3)O2—H2B0.8200
C6—C1—C2119.2 (2)C9—C8—H8B108.3
C6—C1—C7121.4 (2)C7—C8—H8B108.3
C2—C1—C7119.4 (2)H8A—C8—H8B107.4
C3—C2—C1120.5 (2)C14—C9—C10118.0 (2)
C3—C2—H2A119.8C14—C9—C8121.6 (2)
C1—C2—H2A119.8C10—C9—C8120.3 (2)
O1—C3—C2119.6 (2)C11—C10—C9121.4 (2)
O1—C3—C4120.3 (2)C11—C10—H10A119.3
C2—C3—C4120.1 (2)C9—C10—H10A119.3
O2—C4—C5124.3 (2)C12—C11—C10118.6 (3)
O2—C4—C3116.2 (2)C12—C11—H11A120.7
C5—C4—C3119.5 (2)C10—C11—H11A120.7
C4—C5—C6120.9 (2)C11—C12—F1119.0 (3)
C4—C5—H5A119.6C11—C12—C13122.6 (3)
C6—C5—H5A119.6F1—C12—C13118.5 (3)
C5—C6—C1119.9 (3)C12—C13—C14118.2 (3)
C5—C6—H6A120.1C12—C13—H13A120.9
C1—C6—H6A120.1C14—C13—H13A120.9
O3—C7—C1121.2 (2)C9—C14—C13121.2 (3)
O3—C7—C8120.5 (2)C9—C14—H14A119.4
C1—C7—C8118.3 (2)C13—C14—H14A119.4
C9—C8—C7115.7 (2)C3—O1—H1A109.5
C9—C8—H8A108.3C4—O2—H2B109.5
C7—C8—H8A108.3
C6—C1—C2—C31.2 (4)C2—C1—C7—C8175.8 (2)
C7—C1—C2—C3179.1 (2)O3—C7—C8—C98.8 (4)
C1—C2—C3—O1178.1 (2)C1—C7—C8—C9169.9 (2)
C1—C2—C3—C40.9 (4)C7—C8—C9—C14112.3 (3)
O1—C3—C4—O22.9 (4)C7—C8—C9—C1069.3 (3)
C2—C3—C4—O2179.9 (2)C14—C9—C10—C110.3 (4)
O1—C3—C4—C5177.5 (3)C8—C9—C10—C11178.2 (2)
C2—C3—C4—C50.3 (4)C9—C10—C11—C120.1 (4)
O2—C4—C5—C6179.6 (3)C10—C11—C12—F1179.8 (3)
C3—C4—C5—C60.0 (4)C10—C11—C12—C130.3 (4)
C4—C5—C6—C10.4 (4)C11—C12—C13—C140.3 (5)
C2—C1—C6—C51.0 (4)F1—C12—C13—C14179.9 (3)
C7—C1—C6—C5179.4 (3)C10—C9—C14—C130.2 (4)
C6—C1—C7—O3176.9 (3)C8—C9—C14—C13178.3 (2)
C2—C1—C7—O32.8 (4)C12—C13—C14—C90.1 (4)
C6—C1—C7—C84.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.282.690 (2)111
O1—H1A···O2i0.822.162.876 (3)146
O2—H2B···O3ii0.821.922.744 (2)178
Symmetry codes: (i) x, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H11FO3
Mr246.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1640 (16), 5.9120 (12), 24.946 (6)
β (°) 105.33 (3)
V3)1161.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.25 × 0.17
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2229, 2072, 1452
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.04
No. of reflections2072
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.282.690 (2)111
O1—H1A···O2i0.822.162.876 (3)146
O2—H2B···O3ii0.821.922.744 (2)178
Symmetry codes: (i) x, y, z; (ii) x1, y, z.
 

Acknowledgements

I gratefully acknowledge financial support from the Science Foundation for the Youth of Jiangnan University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361–1369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662–667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds