inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

NdO(NO3)

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 30 October 2008; accepted 6 November 2008; online 13 November 2008)

The title compound, neodymium(III) oxide nitrate, which is isostructural with LaO(NO3), arose from a solvothermal reaction. The Nd ion (site symmetry m) is ten-coordinated by eight O atoms of NO3 groups and two μ2-oxide ions. A three-dimensional structure is constructed by the inter­connection of NdO10 polyhedra. The oxide ion and the N atom and one of the nitrate O atoms possess site symmetry m.

Related literature

For background, see: Gobichon et al. (1997[Gobichon, A. E., Auffrédic, J. P. & Louër, D. (1997). Solid State Ionics, 93, 51-64.]); Guillou et al. (1994[Guillou, N., Auffrédic, J. P. & Louër, D. (1994). J. Solid State Chem. 112, 45-52.]). For an isostructural compound, see: Zhang et al. (2004[Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.]).

Experimental

Crystal data
  • NdO(NO3)

  • Mr = 222.25

  • Orthorhombic, P n m a

  • a = 7.5233 (15) Å

  • b = 5.1618 (10) Å

  • c = 8.7157 (17) Å

  • V = 338.46 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.19 mm−1

  • T = 293 (2) K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.107, Tmax = 0.158

  • 2962 measured reflections

  • 410 independent reflections

  • 405 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.81

  • 410 reflections

  • 34 parameters

  • 30 restraints

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O2i 2.434 (5)
Nd1—O2 2.458 (5)
Nd1—O3ii 2.6362 (12)
Nd1—O1 2.694 (3)
Nd1—O1iii 2.719 (4)
Nd1—O1ii 2.826 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: PROCESS-AUTO (Rigaku, 2002[Rigaku (2002). PROCESS-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2002[Rigaku (2002). PROCESS-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The lanthanide nitrates are not only applied for separation of the lanthanide elements but also widely utilized as the precursor of organic or inorganic synthesis. Thus, a large number of lanthanide nitrates are structurally determinated besides a few anhydrous examples (Guillou, et al., 1994; Zhang, et al., 2004; Gobichon, et al., 1997). In this work, the title compound, (I), an anhydrous neodymium oxide nitrate, was unexpectedly obtained under solvothermal conditions in a mixed solvent of H2O and DMF.

The asymmetric unit of (I) is consisted of 0.5 N d, 0.5 O and 0.5 NO3 (Fig. 1). All oxygen atoms of NO3 group are coordinated to the Nd ions. Two oxygen atoms of nitrate group (O1 and O1vi) are coordinated to three different Nd ions with Nd—O distances in the range of 2.694–2.826 A°, and the last one (O3) is coordinated to two different Nd ions with Nd—O distance of 2.636 A° (Table 1). A µ2-O (O2) exists in the structure of (I) with Nd—O distances of 2.434 and 2.458 A° and corresponding Nd—O2—Nd bond angles of 110.72°. These two Nd—O distances are significantly shorter than the others Nd—O distances. Then, the linkages of two adjacent Nd ions are in two modes, of which one is via Nd-µ2-O—Nd bonds with Nd—Nd distance of 4.0254 (8)A° and the other via Nd—O(NO3)-Nd bonds. A three-dimensional framework constructed by the interconnections of NdO10 polyhedra is shown in Fig. 2.

There are two different structures with the same molecular formula of LnONO3, such as LnONO3(Ln=Y, La) in the P4/mmm space group and LaONO3 in Pnma space group. In this work, NdONO3 is the isostructural compound of the reported LaONO3 (Zhang, et al., 2004).

Related literature top

For background, see: Gobichon et al. (1997); Guillou et al. (1994). For an isostructural compound, see: Zhang et al. (2004).

Experimental top

Isonicotine (0.123 g, 1.0 mmol) was added to a mixed solution of 5 ml H2O/3 ml DMF. After being stirred for 5 h, the isonicotine was partially dissovled with pH = 6.0. Then, Nd(NO3)3.6H2O (0.220 g, 0.5 mmol) was added and stirred for 7 h. The molar ratio of Nd(NO3)3.6H2O: isonicotine was 1:2. Finally, the solution with pH = 7.0 was sealed into 23 ml autoclave and heated up to 438 K for 4 days. After naturally cooling to room temperature, colourless prisms of (I) were obtained.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2002); cell refinement: PROCESS-AUTO (Rigaku, 2002); data reduction: CrystalStructure (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of the structure of (I), showing the Nd coordination sphere and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -1/2 + x, y, 1.5 - z; (ii) x, 0.5 - y, z; (iii) 1 - x, 1/2 + y, 2 - z; (iv) 1 - x, -y, 2 - z; (v) -1/2 + x, 0.5 - y, 1.5 - z; (vi) x, -0.5 - y, z; (vii) 1/2 + x, 0.5 - y, 1.5 - z.]
[Figure 2] Fig. 2. A packing diagram for (I), viewed along [010].
neodymium(III) oxide nitrate top
Crystal data top
NdO(NO3)F(000) = 396
Mr = 222.25Dx = 4.362 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2000 reflections
a = 7.5233 (15) Åθ = 3.6–27.0°
b = 5.1618 (10) ŵ = 15.19 mm1
c = 8.7157 (17) ÅT = 293 K
V = 338.46 (11) Å3Prism, colourless
Z = 40.16 × 0.14 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
410 independent reflections
Radiation source: fine-focus sealed tube405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 27.0°, θmin = 3.6°
ω scansh = 98
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 56
Tmin = 0.107, Tmax = 0.158l = 1111
2962 measured reflections
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.024Secondary atom site location: difference Fourier map
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.81(Δ/σ)max = 0.002
410 reflectionsΔρmax = 1.02 e Å3
34 parametersΔρmin = 1.42 e Å3
Crystal data top
NdO(NO3)V = 338.46 (11) Å3
Mr = 222.25Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.5233 (15) ŵ = 15.19 mm1
b = 5.1618 (10) ÅT = 293 K
c = 8.7157 (17) Å0.16 × 0.14 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
410 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
405 reflections with I > 2σ(I)
Tmin = 0.107, Tmax = 0.158Rint = 0.034
2962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02434 parameters
wR(F2) = 0.06830 restraints
S = 1.81Δρmax = 1.02 e Å3
410 reflectionsΔρmin = 1.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.35352 (4)0.25000.83222 (4)0.0055 (2)
O10.6501 (4)0.0288 (7)0.8846 (4)0.0047 (7)
O20.0359 (6)0.25000.8985 (6)0.0080 (10)
O30.7902 (7)0.25000.6964 (6)0.0088 (10)
N10.6934 (10)0.25000.8195 (7)0.0120 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0051 (3)0.0052 (3)0.0061 (3)0.0000.00018 (11)0.000
O10.0054 (10)0.0043 (10)0.0045 (10)0.0002 (7)0.0004 (7)0.0001 (8)
O20.0072 (12)0.0091 (12)0.0076 (13)0.0000.0001 (9)0.000
O30.0091 (13)0.0088 (13)0.0086 (12)0.0000.0022 (9)0.000
N10.0121 (15)0.0120 (15)0.0121 (15)0.0000.0005 (9)0.000
Geometric parameters (Å, º) top
Nd1—O2i2.434 (5)Nd1—Nd1ii4.0254 (8)
Nd1—O22.458 (5)Nd1—Nd1i4.0254 (8)
Nd1—O3ii2.6362 (12)O1—N11.316 (5)
Nd1—O3iii2.6362 (12)O1—Nd1vi2.719 (4)
Nd1—O1iv2.694 (3)O1—Nd1i2.826 (4)
Nd1—O12.694 (3)O2—Nd1ii2.434 (5)
Nd1—O1v2.719 (4)O3—N11.297 (8)
Nd1—O1vi2.719 (4)O3—Nd1i2.6362 (12)
Nd1—O1ii2.826 (4)O3—Nd1viii2.6362 (12)
Nd1—O1vii2.826 (4)N1—O1ix1.316 (5)
O2i—Nd1—O2137.90 (13)O3ii—Nd1—O1ii48.73 (13)
O2i—Nd1—O3ii91.36 (11)O3iii—Nd1—O1ii109.73 (13)
O2—Nd1—O3ii81.18 (12)O1iv—Nd1—O1ii146.51 (6)
O2i—Nd1—O3iii91.36 (11)O1—Nd1—O1ii106.85 (12)
O2—Nd1—O3iii81.18 (12)O1v—Nd1—O1ii144.63 (7)
O3ii—Nd1—O3iii156.5 (2)O1vi—Nd1—O1ii112.81 (4)
O2i—Nd1—O1iv70.92 (12)O2i—Nd1—O1vii75.69 (11)
O2—Nd1—O1iv139.92 (10)O2—Nd1—O1vii68.33 (11)
O3ii—Nd1—O1iv133.51 (14)O3ii—Nd1—O1vii109.73 (13)
O3iii—Nd1—O1iv69.06 (14)O3iii—Nd1—O1vii48.73 (13)
O2i—Nd1—O170.92 (12)O1iv—Nd1—O1vii106.85 (12)
O2—Nd1—O1139.92 (10)O1—Nd1—O1vii146.51 (6)
O3ii—Nd1—O169.06 (14)O1v—Nd1—O1vii112.81 (4)
O3iii—Nd1—O1133.51 (14)O1vi—Nd1—O1vii144.63 (7)
O1iv—Nd1—O164.57 (15)O1ii—Nd1—O1vii61.23 (15)
O2i—Nd1—O1v139.04 (10)Nd1ii—Nd1—Nd1i138.29 (2)
O2—Nd1—O1v77.12 (12)N1—O1—Nd1126.5 (4)
O3ii—Nd1—O1v119.67 (13)N1—O1—Nd1vi91.7 (3)
O3iii—Nd1—O1v70.90 (13)Nd1—O1—Nd1vi111.71 (11)
O1iv—Nd1—O1v68.29 (11)N1—O1—Nd1i91.1 (3)
O1—Nd1—O1v94.51 (7)Nd1—O1—Nd1i93.62 (12)
O2i—Nd1—O1vi139.04 (10)Nd1vi—O1—Nd1i145.72 (12)
O2—Nd1—O1vi77.12 (12)Nd1ii—O2—Nd1110.73 (19)
O3ii—Nd1—O1vi70.90 (13)N1—O3—Nd1i100.35 (11)
O3iii—Nd1—O1vi119.67 (13)N1—O3—Nd1viii100.35 (11)
O1iv—Nd1—O1vi94.51 (7)Nd1i—O3—Nd1viii156.5 (2)
O1—Nd1—O1vi68.29 (11)O3—N1—O1119.7 (3)
O1v—Nd1—O1vi49.66 (16)O3—N1—O1ix119.7 (3)
O2i—Nd1—O1ii75.69 (11)O1—N1—O1ix120.4 (6)
O2—Nd1—O1ii68.33 (12)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1/2, y, z+3/2; (iii) x1/2, y+1, z+3/2; (iv) x, y+1/2, z; (v) x+1, y+1/2, z+2; (vi) x+1, y, z+2; (vii) x1/2, y+1/2, z+3/2; (viii) x+1/2, y1, z+3/2; (ix) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaNdO(NO3)
Mr222.25
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)7.5233 (15), 5.1618 (10), 8.7157 (17)
V3)338.46 (11)
Z4
Radiation typeMo Kα
µ (mm1)15.19
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.107, 0.158
No. of measured, independent and
observed [I > 2σ(I)] reflections
2962, 410, 405
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.81
No. of reflections410
No. of parameters34
No. of restraints30
Δρmax, Δρmin (e Å3)1.02, 1.42

Computer programs: PROCESS-AUTO (Rigaku, 2002), CrystalStructure (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Selected bond lengths (Å) top
Nd1—O2i2.434 (5)Nd1—O12.694 (3)
Nd1—O22.458 (5)Nd1—O1iii2.719 (4)
Nd1—O3ii2.6362 (12)Nd1—O1ii2.826 (4)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1/2, y, z+3/2; (iii) x+1, y+1/2, z+2.
 

Acknowledgements

The project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, Chinese Education Ministry (grant No. 20071108).

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGobichon, A. E., Auffrédic, J. P. & Louër, D. (1997). Solid State Ionics, 93, 51–64.  CrossRef Web of Science Google Scholar
First citationGuillou, N., Auffrédic, J. P. & Louër, D. (1994). J. Solid State Chem. 112, 45–52.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). PROCESS-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889–892.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds