organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-2-naphthol–piperazine (2/1)

aState Key Laboratory of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China and School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: cuidl@sdu.edu.cn

(Received 3 November 2008; accepted 9 November 2008; online 13 November 2008)

In the title compound, 2C10H7BrO·C4H10N2, the piperazine (pip) mol­ecule displays a chair conformation and is linked to two mol­ecules of 6-bromo-2-naphthol (bno) via O—H⋯N hydrogen bonds. Weak N—H⋯O hydrogen bonds from pip to bno mol­ecules result in chains propagating in [100]. The chains inter­act via C—H⋯π inter­actions.

Related literature

For related structures, see: Wang & Tang (2006a[Wang, Y.-T. & Tang, G.-M. (2006a). Acta Cryst. E62, o3833-o3834.],b[Wang, Y.-T., Tang, G.-M. & Ng, S. W. (2006b). Acta Cryst. E62, o4429-o4430.],c[Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006c). Acta Cryst. E62, o3396-o3397.]); Wang et al. (2008[Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H7BrO·C4H10N2

  • Mr = 532.27

  • Monoclinic, P 21 /n

  • a = 10.1327 (4) Å

  • b = 16.2494 (7) Å

  • c = 14.3499 (5) Å

  • β = 108.238 (2)°

  • V = 2244.02 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.409, Tmax = 0.713

  • 16751 measured reflections

  • 5164 independent reflections

  • 2857 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.00

  • 5164 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.82 1.94 2.743 (4) 168
O2—H2B⋯N2i 0.83 1.88 2.694 (4) 163
N1—H1C⋯O2 0.83 2.47 3.235 (4) 152
N2—H2A⋯O1ii 0.77 2.50 3.184 (4) 149
C4—H4ACg5 0.93 2.77 3.471 (3) 133
C14—H14ACg2iii 0.93 2.68 3.371 (3) 132
C16—H16ACg1iii 0.93 2.90 3.570 (3) 130
C21—H21ACg2iv 0.97 2.93 3.831 (3) 156
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg1, Cg2 and Cg5 are the centroids of atoms C1–C5,C10, C5–C10 and C15–C20, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decade, the field of molecular co-crystals have received considerable attention, for example, the design, construction and properties of molecular co-crystals. Recently, many co-crystals containing some organic acids and bases, have been successfully prepared and characterized by some research groups (Wang et al., 2006a,b,c). Especially, co-crystals containing hydroxyl-naphthalene with some organic bases have been synthesized and characterized (Wang et al., 2008). As part of our investigations of co-crystals containing 6-bromo-2-naphthol (bno), we now report the structure of the co-crystal, (I), of bno and piperazine.

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of two independent bno molecules and one independent molecule of piperazine. In the crystal structure of (I), the piperazine molecule display a chair conformation and links with two molecules of 6-bromo-2-naphthol via O—H···N hydrogen bonds. These motifs are extended to one-dimensional chains via intermolecular edge-to-face C—H···π packing interactions (Fig. 2 and Table 1).

Related literature top

For related structures, see: Wang & Tang (2006a,b,c); Wang et al. (2008). Cg1, Cg2 and Cg5 are the centroids of atoms C1–C5,C10, C5–C10 and C15–C20, respectively.

Experimental top

A mixture of bno (446 mg, 1 mmol) and piperazine (86 mg, 1 mmol) was dissolved in methanol (10 ml), which was left at room temperature. Some colourless plates of (I0 were obtained after ten days. Analysis found (%): C, 54.28; H, 4.53; N, 5.28; requires (%): C, 54.16; H, 4.54; N, 5.26.

Refinement top

All the H atoms were located in a difference Fourier map. The carbon-bound hydrogen atoms were relocated to idealised positions (C—H = 0.93 A °), and refined as riding with Uiso(H) = 1.2Ueq(C). The oxygen- and nitrogen-bound hydrogen atoms were refined as riding in their as-found relative possitions with Uiso(H) = 1.5Ueq(O, N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of (I); hydrogen bonds are shown by dashed lines.
6-Bromo-2-naphthol–piperazine (2/1) top
Crystal data top
2C10H7BrO·C4H10N2F(000) = 1072
Mr = 532.27Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3655 reflections
a = 10.1327 (4) Åθ = 2.5–27.5°
b = 16.2494 (7) ŵ = 3.64 mm1
c = 14.3499 (5) ÅT = 296 K
β = 108.238 (2)°Plate, colourless
V = 2244.02 (15) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5164 independent reflections
Radiation source: fine-focus sealed tube2857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9.00 pixels mm-1θmax = 27.6°, θmin = 2.0°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 2021
Tmin = 0.409, Tmax = 0.713l = 1818
16751 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2 + 0.5753P]
where P = (Fo2 + 2Fc2)/3
5164 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
2C10H7BrO·C4H10N2V = 2244.02 (15) Å3
Mr = 532.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1327 (4) ŵ = 3.64 mm1
b = 16.2494 (7) ÅT = 296 K
c = 14.3499 (5) Å0.30 × 0.30 × 0.10 mm
β = 108.238 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2857 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.713Rint = 0.035
16751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.52 e Å3
5164 reflectionsΔρmin = 0.39 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.90393 (4)0.69713 (3)1.25794 (3)0.07368 (16)
O10.5253 (2)0.59439 (15)0.67377 (16)0.0644 (7)
H1B0.44230.58420.65860.097*
C10.6945 (3)0.6429 (2)0.8149 (2)0.0513 (8)
H1A0.74910.65790.77620.062*
C20.5696 (3)0.6067 (2)0.7733 (2)0.0500 (8)
C30.4883 (3)0.5817 (2)0.8315 (2)0.0528 (8)
H3A0.40370.55560.80230.063*
C40.5317 (3)0.59511 (19)0.9301 (2)0.0521 (8)
H4A0.47630.57830.96740.062*
C50.6582 (3)0.63370 (18)0.9756 (2)0.0452 (8)
C60.7088 (3)0.64743 (19)1.0793 (2)0.0520 (8)
H6A0.65530.63181.11840.062*
C70.8328 (3)0.6827 (2)1.1201 (2)0.0518 (8)
C80.9161 (3)0.70853 (19)1.0628 (3)0.0567 (9)
H8A1.00100.73411.09240.068*
C90.8716 (3)0.6958 (2)0.9645 (3)0.0558 (9)
H9A0.92730.71220.92720.067*
C100.7427 (3)0.65831 (18)0.9179 (2)0.0445 (7)
C210.1839 (3)0.6015 (2)0.5035 (3)0.0640 (10)
H21A0.18600.66020.51580.077*
H21B0.08770.58470.47570.077*
C220.2618 (3)0.5824 (2)0.4333 (2)0.0560 (9)
H22A0.21860.61040.37150.067*
H22B0.35670.60200.45970.067*
C230.3232 (3)0.4493 (2)0.5094 (2)0.0601 (9)
H23A0.41940.46580.53830.072*
H23B0.32090.39050.49740.072*
C240.2437 (4)0.4687 (3)0.5782 (3)0.0710 (11)
H24A0.14800.45100.55010.085*
H24B0.28380.43960.63960.085*
N10.2484 (3)0.5572 (2)0.5960 (2)0.0669 (8)
H1C0.19940.57500.62870.100*
N20.2616 (3)0.49323 (18)0.41684 (19)0.0567 (7)
H2A0.30470.48790.38130.085*
Br20.41434 (4)0.63994 (3)1.24310 (3)0.07881 (17)
O20.0266 (2)0.59459 (14)0.65772 (15)0.0587 (6)
H2B0.09120.56040.64300.088*
C110.1170 (3)0.65519 (19)0.8032 (2)0.0436 (7)
H11A0.12870.70050.76700.052*
C120.0343 (3)0.59134 (18)0.7567 (2)0.0429 (7)
C130.0169 (3)0.52264 (18)0.8108 (2)0.0470 (8)
H13A0.04070.47970.77950.056*
C140.0843 (3)0.51849 (18)0.9094 (2)0.0450 (7)
H14A0.07340.47200.94410.054*
C150.1700 (3)0.58307 (17)0.9598 (2)0.0388 (7)
C160.2394 (3)0.58006 (19)1.0613 (2)0.0458 (8)
H16A0.23180.53381.09730.055*
C170.3176 (3)0.6450 (2)1.1062 (2)0.0489 (8)
C180.3303 (3)0.7159 (2)1.0545 (2)0.0533 (8)
H18A0.38260.76031.08730.064*
C190.2665 (3)0.71977 (19)0.9567 (2)0.0499 (8)
H19A0.27650.76680.92250.060*
C200.1845 (3)0.65347 (18)0.9052 (2)0.0395 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0786 (3)0.0808 (3)0.0568 (3)0.0023 (2)0.0141 (2)0.0183 (2)
O10.0537 (13)0.0915 (19)0.0459 (14)0.0005 (13)0.0124 (11)0.0070 (13)
C10.049 (2)0.055 (2)0.054 (2)0.0111 (16)0.0221 (17)0.0048 (16)
C20.0456 (19)0.054 (2)0.049 (2)0.0120 (16)0.0124 (16)0.0006 (16)
C30.0442 (18)0.060 (2)0.053 (2)0.0006 (16)0.0131 (16)0.0032 (17)
C40.0430 (18)0.058 (2)0.060 (2)0.0009 (16)0.0223 (16)0.0040 (17)
C50.0406 (17)0.0422 (18)0.055 (2)0.0082 (15)0.0182 (15)0.0014 (15)
C60.051 (2)0.053 (2)0.055 (2)0.0066 (17)0.0208 (17)0.0032 (17)
C70.052 (2)0.047 (2)0.053 (2)0.0073 (16)0.0131 (17)0.0075 (16)
C80.051 (2)0.048 (2)0.069 (2)0.0036 (16)0.0162 (18)0.0050 (17)
C90.050 (2)0.054 (2)0.069 (2)0.0040 (17)0.0269 (18)0.0024 (18)
C100.0386 (17)0.0399 (18)0.057 (2)0.0070 (14)0.0179 (15)0.0027 (15)
C210.0451 (19)0.072 (3)0.073 (3)0.0027 (18)0.0160 (18)0.006 (2)
C220.0477 (19)0.067 (2)0.051 (2)0.0040 (18)0.0116 (16)0.0067 (17)
C230.0415 (18)0.061 (2)0.072 (2)0.0067 (17)0.0090 (17)0.0002 (19)
C240.045 (2)0.107 (3)0.056 (2)0.016 (2)0.0079 (17)0.021 (2)
N10.0517 (17)0.103 (3)0.0512 (18)0.0028 (17)0.0240 (14)0.0125 (18)
N20.0468 (15)0.073 (2)0.0480 (16)0.0084 (15)0.0109 (13)0.0097 (15)
Br20.0957 (3)0.0887 (3)0.0446 (2)0.0178 (2)0.0114 (2)0.00418 (19)
O20.0544 (13)0.0687 (16)0.0464 (14)0.0138 (12)0.0064 (11)0.0010 (11)
C110.0386 (17)0.0419 (18)0.0513 (19)0.0011 (14)0.0153 (15)0.0094 (15)
C120.0347 (16)0.047 (2)0.0464 (19)0.0035 (15)0.0110 (14)0.0000 (15)
C130.0427 (17)0.0382 (18)0.056 (2)0.0048 (14)0.0095 (15)0.0056 (15)
C140.0477 (17)0.0337 (17)0.054 (2)0.0003 (15)0.0163 (15)0.0046 (15)
C150.0359 (16)0.0357 (17)0.0458 (18)0.0038 (13)0.0141 (14)0.0001 (14)
C160.0447 (18)0.0460 (19)0.049 (2)0.0014 (15)0.0182 (15)0.0042 (15)
C170.0495 (18)0.056 (2)0.0416 (18)0.0002 (16)0.0151 (15)0.0034 (16)
C180.057 (2)0.049 (2)0.055 (2)0.0079 (16)0.0181 (17)0.0094 (16)
C190.057 (2)0.0390 (19)0.054 (2)0.0082 (15)0.0184 (17)0.0020 (15)
C200.0337 (15)0.0402 (18)0.0458 (18)0.0044 (13)0.0144 (14)0.0004 (14)
Geometric parameters (Å, º) top
Br1—C71.896 (3)C23—C241.490 (5)
O1—C21.371 (4)C23—H23A0.9700
O1—H1B0.8168C23—H23B0.9700
C1—C21.353 (4)C24—N11.460 (5)
C1—C101.427 (4)C24—H24A0.9700
C1—H1A0.9300C24—H24B0.9700
C2—C31.405 (4)N1—H1C0.8336
C3—C41.361 (4)N2—H2A0.7730
C3—H3A0.9300Br2—C171.903 (3)
C4—C51.392 (4)O2—C121.360 (3)
C4—H4A0.9300O2—H2B0.8329
C5—C101.423 (4)C11—C121.369 (4)
C5—C61.431 (4)C11—C201.408 (4)
C6—C71.338 (4)C11—H11A0.9300
C6—H6A0.9300C12—C131.403 (4)
C7—C81.414 (5)C13—C141.367 (4)
C8—C91.355 (4)C13—H13A0.9300
C8—H8A0.9300C14—C151.409 (4)
C9—C101.406 (4)C14—H14A0.9300
C9—H9A0.9300C15—C161.406 (4)
C21—N11.470 (4)C15—C201.420 (4)
C21—C221.495 (4)C16—C171.356 (4)
C21—H21A0.9700C16—H16A0.9300
C21—H21B0.9700C17—C181.398 (4)
C22—N21.468 (4)C18—C191.350 (4)
C22—H22A0.9700C18—H18A0.9300
C22—H22B0.9700C19—C201.419 (4)
C23—N21.464 (4)C19—H19A0.9300
C2—O1—H1B106.3N2—C23—H23B109.8
C2—C1—C10120.2 (3)C24—C23—H23B109.8
C2—C1—H1A119.9H23A—C23—H23B108.2
C10—C1—H1A119.9N1—C24—C23109.2 (3)
C1—C2—O1118.7 (3)N1—C24—H24A109.8
C1—C2—C3120.3 (3)C23—C24—H24A109.8
O1—C2—C3121.0 (3)N1—C24—H24B109.8
C4—C3—C2120.8 (3)C23—C24—H24B109.8
C4—C3—H3A119.6H24A—C24—H24B108.3
C2—C3—H3A119.6C24—N1—C21110.0 (3)
C3—C4—C5120.7 (3)C24—N1—H1C116.5
C3—C4—H4A119.6C21—N1—H1C99.4
C5—C4—H4A119.6C23—N2—C22110.9 (3)
C4—C5—C10119.1 (3)C23—N2—H2A112.0
C4—C5—C6122.4 (3)C22—N2—H2A104.1
C10—C5—C6118.4 (3)C12—O2—H2B107.6
C7—C6—C5120.3 (3)C12—C11—C20121.1 (3)
C7—C6—H6A119.9C12—C11—H11A119.5
C5—C6—H6A119.9C20—C11—H11A119.5
C6—C7—C8121.4 (3)O2—C12—C11119.3 (3)
C6—C7—Br1120.6 (3)O2—C12—C13121.0 (3)
C8—C7—Br1118.0 (3)C11—C12—C13119.8 (3)
C9—C8—C7119.7 (3)C14—C13—C12120.3 (3)
C9—C8—H8A120.1C14—C13—H13A119.9
C7—C8—H8A120.1C12—C13—H13A119.9
C8—C9—C10121.2 (3)C13—C14—C15121.5 (3)
C8—C9—H9A119.4C13—C14—H14A119.3
C10—C9—H9A119.4C15—C14—H14A119.3
C9—C10—C5118.9 (3)C16—C15—C14122.3 (3)
C9—C10—C1122.3 (3)C16—C15—C20119.7 (3)
C5—C10—C1118.8 (3)C14—C15—C20118.1 (3)
N1—C21—C22109.2 (3)C17—C16—C15119.6 (3)
N1—C21—H21A109.9C17—C16—H16A120.2
C22—C21—H21A109.9C15—C16—H16A120.2
N1—C21—H21B109.9C16—C17—C18121.7 (3)
C22—C21—H21B109.9C16—C17—Br2119.5 (2)
H21A—C21—H21B108.3C18—C17—Br2118.7 (2)
N2—C22—C21109.8 (3)C19—C18—C17119.7 (3)
N2—C22—H22A109.7C19—C18—H18A120.1
C21—C22—H22A109.7C17—C18—H18A120.1
N2—C22—H22B109.7C18—C19—C20121.2 (3)
C21—C22—H22B109.7C18—C19—H19A119.4
H22A—C22—H22B108.2C20—C19—H19A119.4
N2—C23—C24109.4 (3)C11—C20—C19122.8 (3)
N2—C23—H23A109.8C11—C20—C15119.3 (3)
C24—C23—H23A109.8C19—C20—C15117.9 (3)
C10—C1—C2—O1178.7 (3)C22—C21—N1—C2460.3 (4)
C10—C1—C2—C31.9 (5)C24—C23—N2—C2258.6 (3)
C1—C2—C3—C41.6 (5)C21—C22—N2—C2358.0 (3)
O1—C2—C3—C4179.0 (3)C20—C11—C12—O2178.6 (2)
C2—C3—C4—C50.3 (5)C20—C11—C12—C130.4 (4)
C3—C4—C5—C100.7 (5)O2—C12—C13—C14176.8 (3)
C3—C4—C5—C6178.7 (3)C11—C12—C13—C141.3 (4)
C4—C5—C6—C7178.1 (3)C12—C13—C14—C151.4 (4)
C10—C5—C6—C70.1 (4)C13—C14—C15—C16179.6 (3)
C5—C6—C7—C81.0 (5)C13—C14—C15—C200.2 (4)
C5—C6—C7—Br1177.5 (2)C14—C15—C16—C17178.3 (3)
C6—C7—C8—C91.5 (5)C20—C15—C16—C171.2 (4)
Br1—C7—C8—C9177.0 (2)C15—C16—C17—C180.6 (5)
C7—C8—C9—C100.9 (5)C15—C16—C17—Br2178.8 (2)
C8—C9—C10—C50.2 (5)C16—C17—C18—C191.7 (5)
C8—C9—C10—C1178.9 (3)Br2—C17—C18—C19177.7 (2)
C4—C5—C10—C9178.8 (3)C17—C18—C19—C201.0 (5)
C6—C5—C10—C90.7 (4)C12—C11—C20—C19177.4 (3)
C4—C5—C10—C10.3 (4)C12—C11—C20—C152.0 (4)
C6—C5—C10—C1178.4 (3)C18—C19—C20—C11179.7 (3)
C2—C1—C10—C9179.9 (3)C18—C19—C20—C150.8 (4)
C2—C1—C10—C51.0 (4)C16—C15—C20—C11178.7 (3)
N1—C21—C22—N258.1 (4)C14—C15—C20—C111.9 (4)
N2—C23—C24—N159.7 (4)C16—C15—C20—C191.8 (4)
C23—C24—N1—C2161.2 (3)C14—C15—C20—C19177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.821.942.743 (4)168
O2—H2B···N2i0.831.882.694 (4)163
N1—H1C···O20.832.473.235 (4)152
N2—H2A···O1ii0.772.503.184 (4)149
C4—H4A···Cg50.932.773.471 (3)133
C14—H14A···Cg2iii0.932.683.371 (3)132
C16—H16A···Cg1iii0.932.903.570 (3)130
C21—H21A···Cg2iv0.972.933.831 (3)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x3/2, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formula2C10H7BrO·C4H10N2
Mr532.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.1327 (4), 16.2494 (7), 14.3499 (5)
β (°) 108.238 (2)
V3)2244.02 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.409, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
16751, 5164, 2857
Rint0.035
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.00
No. of reflections5164
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.39

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.821.942.743 (4)168
O2—H2B···N2i0.831.882.694 (4)163
N1—H1C···O20.832.473.235 (4)152
N2—H2A···O1ii0.772.503.184 (4)149
C4—H4A···Cg50.932.773.471 (3)133
C14—H14A···Cg2iii0.932.683.371 (3)132
C16—H16A···Cg1iii0.932.903.570 (3)130
C21—H21A···Cg2iv0.972.933.831 (3)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x3/2, y+1/2, z3/2.
 

Acknowledgements

This work was supported by the Starting Fund of Shandong University.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T. & Tang, G.-M. (2006a). Acta Cryst. E62, o3833–o3834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Ng, S. W. (2006b). Acta Cryst. E62, o4429–o4430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006c). Acta Cryst. E62, o3396–o3397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds