metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-[μ-1,1′-(butane-1,4-di­yl)di­imidazole]bis­­(μ4-naphthalene-1,4-di­carboxyl­ato)dicadmium(II)]

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: zhangwenzhi1968@yahoo.com.cn

(Received 3 November 2008; accepted 12 November 2008; online 20 November 2008)

In the title compound, [Cd2(C12H6O4)2(C10H14N4)(H2O)]n, the coordination polyhedron around each CdII ion is a distorted CdNO5 octa­hedron. The water O atom has site symmetry 2 and the complete 1,1′-(butane-1,4-di­yl)diimidazole (L) ligand is generated by inversion. The naphthalene-1,4-dicarboxyl­ate and L ligands bridge the metal centres, forming a three-dimensional framework, which is consolidated by O—H⋯O hydrogen bonds.

Related literature

For background to metal–organic frameworks, see Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C12H6O4)2(C10H14N4)(H2O)]

  • Mr = 861.40

  • Monoclinic, C 2/c

  • a = 18.773 (2) Å

  • b = 14.9118 (19) Å

  • c = 14.2298 (18) Å

  • β = 127.3900 (10)°

  • V = 3165.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 293 (2) K

  • 0.33 × 0.27 × 0.22 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.732

  • 8715 measured reflections

  • 3102 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.06

  • 3102 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.264 (2)
Cd1—O2 2.2746 (17)
Cd1—O1i 2.2344 (17)
Cd1—O4ii 2.3096 (16)
Cd1—O4iii 2.4847 (15)
Cd1—O1W 2.2995 (14)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW11⋯O3iii 0.76 (3) 1.80 (3) 2.549 (2) 169 (3)
Symmetry code: (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, metal-organic frameworks are of great interest because of their interesting structures and potential applications. Up to now, some interesting interpenetrated or entangled metal-organic networks with bis(imidazole)-containing ligands have been documented (Yang et al., 2008). However, flexible ligands such as 1,1'-(butane-1,4-diyl)diimidazole (L) has not been well explored to date (Ma et al., 2003). In this work, we selected naphthalene-1,4-dicarboxylic acid (1,4-H2ndc) and L as linkers in combination with a source of cadmium ions, generating a new coordination polymer, [Cd2(1,4-ndc)2(L)(H2O)], (I), which is reported here.

In compound (I) each CdII atom is six-coordinated by one N atom from one L ligand, and five O atoms from four carboxylate oxygen atoms and one water molecule in a distorted octohedral coordination sphere (Fig. 1, Table 1). The water molecule O atom has site symmetry 2 and the L ligand is situated across an inversion centre. The two neighbouring CdII atoms are bridged by the carboxylate and water molecule to form a dimer. The dimers are further linked by the backbone of 1,4-ndc and L ligands to form a three-dimensional framework (Fig. 2). An O—H···O hydrogen bond (Table 2) helps to consolidate the packing.

Related literature top

For background to metal–organic frameworks, see Ma et al. (2003); Yang et al. (2008).

Experimental top

A mixture of 1,4-H2ndc (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and CdCl2.2.5H2O (0.5 mmol) was suspended in 14 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 413 K for three days, the autoclave was slowly cooled to room temperature. The resulting colourless blocks of (I) were collected, washed with deionized water and dried.

Refinement top

The C–bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H atom was located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), extended to show the Cd coordination sphere and the complete L ligand. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity. Symmetry code: (i) 1-x, y, 0.5-z; (ii) x+0.5, y+0.5, z; (iii) 0.5-x, 0.5-y, -z; (iv) -x, y, -0.5-z.
[Figure 2] Fig. 2. View of the three-dimensional framework of (I).
Poly[µ-aqua-[µ-1,1'-(butane-1,4-diyl)diimidazole]bis(µ4-naphthalene-1,4- dicarboxylato)dicadmium(II)] top
Crystal data top
[Cd2(C12H6O4)2(C10H14N4)(H2O)]F(000) = 1712
Mr = 861.40Dx = 1.808 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3102 reflections
a = 18.773 (2) Åθ = 1.1–26.0°
b = 14.9118 (19) ŵ = 1.41 mm1
c = 14.2298 (18) ÅT = 293 K
β = 127.390 (1)°Block, colorless
V = 3165.0 (7) Å30.33 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3102 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1623
Tmin = 0.691, Tmax = 0.732k = 1817
8715 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0287P)2 + 3.5082P]
where P = (Fo2 + 2Fc2)/3
3102 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cd2(C12H6O4)2(C10H14N4)(H2O)]V = 3165.0 (7) Å3
Mr = 861.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.773 (2) ŵ = 1.41 mm1
b = 14.9118 (19) ÅT = 293 K
c = 14.2298 (18) Å0.33 × 0.27 × 0.22 mm
β = 127.390 (1)°
Data collection top
Bruker APEX CCD
diffractometer
3102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2809 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.732Rint = 0.018
8715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.47 e Å3
3102 reflectionsΔρmin = 0.30 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37567 (16)0.35138 (16)0.1979 (2)0.0297 (5)
C20.30731 (16)0.28246 (16)0.1737 (2)0.0280 (5)
C30.21801 (17)0.30336 (18)0.0966 (2)0.0359 (6)
H30.20050.35500.05090.043*
C40.15233 (17)0.24857 (19)0.0850 (2)0.0374 (6)
H40.09220.26460.03280.045*
C50.17624 (16)0.17188 (17)0.1500 (2)0.0305 (5)
C60.10956 (17)0.12334 (17)0.1573 (2)0.0333 (6)
C70.26737 (17)0.14297 (16)0.2231 (2)0.0300 (5)
C80.33359 (16)0.19901 (16)0.2353 (2)0.0288 (5)
C90.42311 (18)0.16783 (19)0.3048 (2)0.0422 (6)
H90.46760.20310.31330.051*
C100.4447 (2)0.0865 (2)0.3594 (3)0.0579 (9)
H100.50380.06700.40480.069*
C110.3796 (3)0.0319 (2)0.3485 (3)0.0549 (9)
H110.39570.02340.38640.066*
C120.2933 (2)0.05926 (19)0.2830 (3)0.0432 (7)
H120.25050.02290.27710.052*
C130.26154 (18)0.5557 (2)0.0295 (3)0.0433 (7)
H130.24820.50720.00150.052*
C140.32799 (18)0.64237 (19)0.0731 (2)0.0404 (6)
H140.37010.66570.08100.048*
C150.2503 (2)0.6826 (2)0.1106 (3)0.0471 (7)
H150.22950.73780.14840.056*
C160.1209 (2)0.6416 (3)0.1088 (3)0.0654 (10)
H16A0.12150.69890.07610.078*
H16B0.11110.59540.06970.078*
C170.04549 (17)0.6405 (2)0.2362 (3)0.0479 (7)
H17A0.05080.58760.27120.057*
H17B0.05020.69260.27290.057*
N10.33508 (13)0.56210 (15)0.02170 (18)0.0332 (5)
N20.20866 (14)0.62697 (18)0.0825 (2)0.0440 (6)
O10.43795 (13)0.36693 (13)0.30491 (17)0.0455 (5)
O20.36314 (12)0.38808 (13)0.11038 (17)0.0438 (5)
O1W0.50000.55213 (17)0.25000.0267 (5)
O30.11724 (18)0.13705 (18)0.2487 (2)0.0756 (9)
O40.05171 (10)0.07264 (11)0.07468 (14)0.0285 (4)
Cd10.453957 (10)0.468475 (11)0.086231 (14)0.02277 (7)
HW110.5363 (19)0.581 (2)0.257 (3)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (13)0.0274 (13)0.0399 (14)0.0057 (10)0.0242 (12)0.0041 (10)
C20.0297 (13)0.0301 (13)0.0297 (12)0.0090 (10)0.0210 (11)0.0043 (9)
C30.0322 (14)0.0360 (14)0.0372 (14)0.0070 (11)0.0199 (12)0.0061 (11)
C40.0224 (13)0.0495 (16)0.0335 (13)0.0073 (11)0.0135 (11)0.0031 (12)
C50.0330 (14)0.0352 (14)0.0277 (12)0.0151 (11)0.0207 (11)0.0086 (10)
C60.0349 (14)0.0362 (14)0.0367 (13)0.0151 (11)0.0258 (12)0.0083 (11)
C70.0383 (14)0.0263 (12)0.0321 (12)0.0085 (10)0.0248 (12)0.0065 (9)
C80.0326 (13)0.0286 (13)0.0275 (12)0.0062 (10)0.0194 (11)0.0049 (9)
C90.0309 (14)0.0451 (16)0.0473 (16)0.0033 (12)0.0220 (13)0.0020 (13)
C100.0466 (19)0.055 (2)0.059 (2)0.0159 (16)0.0252 (17)0.0103 (16)
C110.071 (2)0.0382 (17)0.057 (2)0.0114 (15)0.0393 (19)0.0134 (14)
C120.0588 (19)0.0316 (14)0.0473 (16)0.0070 (13)0.0363 (16)0.0002 (12)
C130.0273 (14)0.0576 (18)0.0448 (16)0.0071 (13)0.0219 (13)0.0155 (14)
C140.0337 (15)0.0472 (17)0.0424 (15)0.0055 (12)0.0242 (13)0.0125 (12)
C150.0421 (17)0.0460 (17)0.0500 (17)0.0172 (13)0.0264 (14)0.0216 (13)
C160.0298 (16)0.113 (3)0.0529 (19)0.0232 (18)0.0248 (15)0.010 (2)
C170.0267 (15)0.0587 (19)0.0532 (18)0.0054 (13)0.0216 (14)0.0030 (14)
N10.0226 (10)0.0413 (12)0.0333 (11)0.0050 (9)0.0157 (9)0.0085 (9)
N20.0240 (11)0.0664 (17)0.0381 (12)0.0166 (11)0.0169 (10)0.0157 (11)
O10.0446 (12)0.0513 (12)0.0427 (11)0.0287 (9)0.0276 (10)0.0154 (9)
O20.0366 (11)0.0469 (12)0.0466 (11)0.0093 (8)0.0245 (9)0.0115 (9)
O1W0.0269 (14)0.0260 (13)0.0350 (13)0.0000.0227 (12)0.000
O30.0944 (19)0.103 (2)0.0678 (15)0.0748 (16)0.0690 (15)0.0539 (14)
O40.0261 (9)0.0332 (9)0.0295 (8)0.0109 (7)0.0185 (7)0.0068 (7)
Cd10.01994 (10)0.02484 (11)0.02462 (10)0.00131 (6)0.01409 (8)0.00274 (6)
Geometric parameters (Å, º) top
C1—O21.245 (3)C13—H130.9300
C1—O11.256 (3)C14—C151.351 (4)
C1—C21.511 (3)C14—N11.366 (3)
C2—C31.370 (3)C14—H140.9300
C2—C81.427 (3)C15—N21.357 (4)
C3—C41.403 (3)C15—H150.9300
C3—H30.9300C16—N21.468 (3)
C4—C51.364 (4)C16—C171.474 (4)
C4—H40.9300C16—H16A0.9700
C5—C71.426 (4)C16—H16B0.9700
C5—C61.503 (3)C17—C17i1.502 (5)
C6—O31.236 (3)C17—H17A0.9700
C6—O41.258 (3)C17—H17B0.9700
C7—C81.418 (3)O1—Cd1ii2.2344 (17)
C7—C121.421 (4)O1W—Cd1ii2.2995 (14)
C8—C91.414 (4)O1W—HW110.76 (3)
C9—C101.363 (4)O4—Cd1iii2.3096 (16)
C9—H90.9300O4—Cd1iv2.4848 (15)
C10—C111.396 (5)Cd1—N12.264 (2)
C10—H100.9300Cd1—O22.2746 (17)
C11—C121.351 (5)Cd1—O1ii2.2344 (17)
C11—H110.9300Cd1—O4iii2.3096 (16)
C12—H120.9300Cd1—O4v2.4847 (15)
C13—N11.319 (3)Cd1—O1W2.2995 (14)
C13—N21.332 (4)
O2—C1—O1127.1 (2)C14—C15—H15126.6
O2—C1—C2116.9 (2)N2—C15—H15126.6
O1—C1—C2116.1 (2)N2—C16—C17113.7 (3)
C3—C2—C8119.3 (2)N2—C16—H16A108.8
C3—C2—C1119.0 (2)C17—C16—H16A108.8
C8—C2—C1121.6 (2)N2—C16—H16B108.8
C2—C3—C4121.5 (2)C17—C16—H16B108.8
C2—C3—H3119.3H16A—C16—H16B107.7
C4—C3—H3119.3C16—C17—C17i114.3 (3)
C5—C4—C3120.3 (2)C16—C17—H17A108.7
C5—C4—H4119.8C17i—C17—H17A108.7
C3—C4—H4119.8C16—C17—H17B108.7
C4—C5—C7120.2 (2)C17i—C17—H17B108.7
C4—C5—C6120.4 (2)H17A—C17—H17B107.6
C7—C5—C6119.0 (2)C13—N1—C14105.2 (2)
O3—C6—O4124.4 (2)C13—N1—Cd1124.23 (18)
O3—C6—C5115.0 (2)C14—N1—Cd1129.70 (17)
O4—C6—C5120.5 (2)C13—N2—C15106.8 (2)
C8—C7—C12119.2 (2)C13—N2—C16126.7 (3)
C8—C7—C5119.0 (2)C15—N2—C16126.4 (3)
C12—C7—C5121.7 (2)C1—O1—Cd1ii138.66 (17)
C9—C8—C7118.2 (2)C1—O2—Cd1132.78 (16)
C9—C8—C2122.5 (2)Cd1—O1W—Cd1ii114.29 (11)
C7—C8—C2119.2 (2)Cd1—O1W—HW11101 (2)
C10—C9—C8120.5 (3)Cd1ii—O1W—HW11115 (2)
C10—C9—H9119.8C6—O4—Cd1iii125.42 (15)
C8—C9—H9119.8C6—O4—Cd1iv124.57 (15)
C9—C10—C11121.3 (3)Cd1iii—O4—Cd1iv107.96 (6)
C9—C10—H10119.4O1ii—Cd1—N1173.89 (7)
C11—C10—H10119.4O1ii—Cd1—O289.23 (7)
C12—C11—C10120.1 (3)N1—Cd1—O284.66 (7)
C12—C11—H11119.9O1ii—Cd1—O1W92.34 (7)
C10—C11—H11119.9N1—Cd1—O1W87.83 (7)
C11—C12—C7120.7 (3)O2—Cd1—O1W89.30 (6)
C11—C12—H12119.7O1ii—Cd1—O4iii89.03 (6)
C7—C12—H12119.7N1—Cd1—O4iii93.33 (7)
N1—C13—N2111.8 (3)O2—Cd1—O4iii114.98 (7)
N1—C13—H13124.1O1W—Cd1—O4iii155.70 (5)
N2—C13—H13124.1O1ii—Cd1—O4v94.20 (7)
C15—C14—N1109.4 (2)N1—Cd1—O4v91.89 (7)
C15—C14—H14125.3O2—Cd1—O4v172.29 (6)
N1—C14—H14125.3O1W—Cd1—O4v83.67 (5)
C14—C15—N2106.8 (2)O4iii—Cd1—O4v72.04 (6)
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O3v0.76 (3)1.80 (3)2.549 (2)169 (3)
Symmetry code: (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cd2(C12H6O4)2(C10H14N4)(H2O)]
Mr861.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.773 (2), 14.9118 (19), 14.2298 (18)
β (°) 127.390 (1)
V3)3165.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.33 × 0.27 × 0.22
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.691, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
8715, 3102, 2809
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.07
No. of reflections3102
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.264 (2)Cd1—O4ii2.3096 (16)
Cd1—O22.2746 (17)Cd1—O4iii2.4847 (15)
Cd1—O1i2.2344 (17)Cd1—O1W2.2995 (14)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O3iii0.76 (3)1.80 (3)2.549 (2)169 (3)
Symmetry code: (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (grant No. 1152G053)

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds