metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ3-chlorido-[μ2-(3-pyrid­yl)(4-pyrid­yl)methanone-κ2N:N′]dicopper(I)]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 6 November 2008; accepted 17 November 2008; online 22 November 2008)

In the title compound, [Cu2Cl2(C11H8N2O)]n, stair-like ribbons of formula [Cu2Cl2]n are linked into coordination polymer layers by tethering (3-pyrid­yl)(4-pyrid­yl)methanone (3,4′-dpk) ligands. The two distinct CuI centres both adopt distorted CuNCl3 tetra­hedral coordinations. Individual [Cu2Cl2(3,4′-dpk)]n layers stack in an AB pattern along the c direction by way of weak C—H⋯O inter­actions between the pyridyl rings and ketone O atoms.

Related literature

For copper molybdate coordination polymers with (3-pyridyl)(4-pyridyl)­methanone and the synthesis of this ligand, see: Montney & LaDuca (2008[Montney, M. R. & LaDuca, R. L. (2008). J. Solid State Chem. 181, 828—836.]). For data-handling software, see: Sheldrick (2003[Sheldrick, G. M. (2003). CELL-NOW. University of Göttingen, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl2(C11H8N2O)]

  • Mr = 382.17

  • Monoclinic, P 21 /c

  • a = 3.7765 (7) Å

  • b = 25.935 (5) Å

  • c = 12.339 (2) Å

  • β = 94.462 (3)°

  • V = 1204.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.96 mm−1

  • T = 173 (2) K

  • 0.22 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007[Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany.]) Tmin = 0.503, Tmax = 0.731

  • 20010 measured reflections

  • 2794 independent reflections

  • 2435 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.06

  • 2794 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.995 (3)
Cu1—Cl2 2.2787 (10)
Cu1—Cl2i 2.4081 (10)
Cu1—Cl1 2.5854 (11)
Cu2—N2ii 2.002 (3)
Cu2—Cl1 2.3173 (10)
Cu2—Cl1i 2.4118 (10)
Cu2—Cl2i 2.5343 (11)
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1iii 0.93 2.35 3.112 (5) 139
Symmetry code: (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The kinked-donor disposed dipodal tethering ligand (3-pyridyl)(4-pyridyl)methanone (3,4'-dpk) has been rarely utilized for the construction of coordination polymer solids. Two copper molybdate phases incoporating this ligand have been reported recently (Montney & LaDuca, 2008). In an attempt to extend this chemistry into dicarboxylate systems, yellow crystals of the title compound, (I), were obtained.

The asymmetric unit of (I) contains two monovalent copper atoms, two chloride ions and one complete 3,4'-dpk ligand (Fig. 1). The coordination environment at each Cu atom is a distorted {CuCl3N} tetrahedron (Table 1). The Cu and Cl atoms link into [Cu2Cl2]n stair-like ribbons that are oriented parallel to the a crystal direction. The Cu···Cu distances across the `steps' of the stair-like ribbons measure 2.857 (1) Å and 3.153 (1) Å, respectively.

Parallel [Cu2Cl2]n ribbons are covalently connected into [Cu2Cl2(3,4'-dpk)]n coordination polymer layers, arranged parallel to the ab crystal planes, via the tethering 3,4'-dpk ligands (Fig. 2). The Cu···Cu contact distances across the diimine ligands measure 11.573 (3) Å. The dihedral angle between the pyridyl rings within a 3,4'-dpk ligand is 46.53 (17)°. Individual [Cu2Cl2(3,4'-dpk)]n layers stack in an AB pattern along the c crystal direction through weak C—H···O supramolecular interactions between the pyridyl rings and ketone O atoms (Fig. 3), with a C···O contact distance of 3.112 (5) Å (Table 2).

Related literature top

For copper molybdate coordination polymers with (3-pyridyl)(4-pyridyl)methanone and the synthesis of this ligand, see: Montney & LaDuca (2008). For data-handling software, see: Sheldrick (2003).

Experimental top

All chemicals were obtained commercially with the exception of (3-pyridyl)(4-pyridyl)methanone (Montney & LaDuca, 2008). A mixture of copper(II) chloride dihydrate (63 mg, 0.37 mmol), phthalic acid (61 mg, 0.37 mmol), (3-pyridyl)(4-pyridyl)methanone (136 mg, 0.74 mmol) and 10.0 g water (555 mmol) was placed in a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. Yellow–orange blocks of (I) were obtained.

Refinement top

Reflection data were collected on a non-merohedrally twinned crystal. The twin law was determined with CELL-NOW (Sheldrick, 2003). The structure was solved and refined using reflections from only the major twin component, whose reflection file was generated using TWINABS (Sheldrick, 2007). All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I), expanded to show the metal coordination spheres, showing 50% probability ellipsoids. Hydrogen atom positions are shown as gray sticks. Symmetry codes: (1) x - 1, y, z (ii) -x, y - 1/2, -z + 1/2
[Figure 2] Fig. 2. A single [Cu2Cl2(3,4'-dpk)]n layer in (I) formed by the linkage of [Cu2Cl2]n ladders through the diimine ligands.
[Figure 3] Fig. 3. Packing diagram illustrating the AB layer stacking pattern, which forms the 3-D crystal structure of (I) through weak C—H···O interactions between pyridyl rings and ketone O atoms.
Poly[di-µ3-chlorido-[µ2-(3-pyridyl)(4-pyridyl)methanone- κ2N:N']dicopper(I)] top
Crystal data top
[Cu2Cl2(C11H8N2O)]F(000) = 752
Mr = 382.17Dx = 2.107 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20010 reflections
a = 3.7765 (7) Åθ = 1.6–28.3°
b = 25.935 (5) ŵ = 3.96 mm1
c = 12.339 (2) ÅT = 173 K
β = 94.462 (3)°Block, yellow
V = 1204.9 (4) Å30.22 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2794 independent reflections
Radiation source: fine-focus sealed tube2435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
h = 54
Tmin = 0.503, Tmax = 0.731k = 034
20010 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0339P)2 + 4.4918P]
where P = (Fo2 + 2Fc2)/3
2794 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2Cl2(C11H8N2O)]V = 1204.9 (4) Å3
Mr = 382.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7765 (7) ŵ = 3.96 mm1
b = 25.935 (5) ÅT = 173 K
c = 12.339 (2) Å0.22 × 0.14 × 0.08 mm
β = 94.462 (3)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2794 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
2435 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.731Rint = 0.042
20010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.97 e Å3
2794 reflectionsΔρmin = 0.48 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections for the major twin component. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.30817 (14)0.633401 (18)0.12987 (4)0.03284 (15)
Cu20.09246 (14)0.576023 (18)0.27566 (4)0.03282 (15)
Cl10.4078 (2)0.62217 (3)0.33820 (6)0.01995 (17)
Cl20.7724 (2)0.58732 (3)0.07265 (7)0.02118 (18)
N10.1879 (8)0.70719 (11)0.0999 (2)0.0217 (6)
C20.2012 (9)0.79762 (13)0.1460 (3)0.0186 (6)
N20.1356 (8)0.99919 (11)0.2175 (2)0.0228 (6)
C80.2454 (9)0.89246 (12)0.2191 (3)0.0193 (7)
C70.1332 (10)0.91779 (14)0.3097 (3)0.0237 (7)
H70.09730.89950.37280.028*
C10.2845 (9)0.74576 (13)0.1677 (3)0.0205 (7)
H10.41390.73780.23270.025*
O10.4939 (9)0.82138 (10)0.3137 (2)0.0371 (7)
C90.2995 (9)0.92152 (14)0.1272 (3)0.0224 (7)
H90.36960.90580.06460.027*
C50.0002 (10)0.71977 (14)0.0055 (3)0.0238 (7)
H50.07290.69340.04230.029*
C40.0885 (10)0.76977 (14)0.0230 (3)0.0236 (7)
H40.21240.77680.08950.028*
C30.0094 (9)0.80956 (13)0.0486 (3)0.0210 (7)
H30.05230.84350.03160.025*
C100.2469 (9)0.97448 (13)0.1308 (3)0.0216 (7)
H100.29110.99390.06990.026*
C60.0756 (10)0.97045 (14)0.3052 (3)0.0252 (7)
H60.00830.98670.36530.030*
C110.3264 (10)0.83580 (13)0.2312 (3)0.0218 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0365 (3)0.0196 (2)0.0417 (3)0.00451 (19)0.0013 (2)0.0024 (2)
Cu20.0436 (3)0.0188 (2)0.0359 (3)0.0030 (2)0.0024 (2)0.00250 (19)
Cl10.0204 (4)0.0227 (4)0.0165 (4)0.0004 (3)0.0001 (3)0.0049 (3)
Cl20.0234 (4)0.0203 (4)0.0197 (4)0.0012 (3)0.0005 (3)0.0002 (3)
N10.0223 (15)0.0191 (14)0.0232 (15)0.0003 (11)0.0024 (11)0.0000 (11)
C20.0198 (16)0.0178 (15)0.0181 (15)0.0006 (12)0.0008 (12)0.0004 (12)
N20.0243 (15)0.0187 (14)0.0251 (15)0.0012 (11)0.0001 (12)0.0002 (12)
C80.0227 (17)0.0155 (15)0.0191 (16)0.0016 (12)0.0020 (13)0.0007 (12)
C70.035 (2)0.0209 (17)0.0149 (16)0.0059 (14)0.0029 (14)0.0002 (13)
C10.0234 (17)0.0195 (16)0.0177 (16)0.0010 (13)0.0035 (13)0.0006 (13)
O10.0581 (19)0.0229 (13)0.0270 (14)0.0042 (13)0.0178 (13)0.0015 (11)
C90.0263 (18)0.0235 (17)0.0174 (16)0.0006 (14)0.0021 (13)0.0013 (13)
C50.0278 (18)0.0210 (16)0.0219 (17)0.0008 (14)0.0021 (14)0.0069 (14)
C40.0273 (19)0.0265 (18)0.0162 (16)0.0018 (14)0.0040 (13)0.0006 (13)
C30.0235 (17)0.0200 (16)0.0192 (16)0.0032 (13)0.0002 (13)0.0022 (13)
C100.0233 (17)0.0224 (17)0.0190 (16)0.0014 (13)0.0009 (13)0.0043 (13)
C60.035 (2)0.0191 (17)0.0219 (17)0.0034 (14)0.0056 (15)0.0053 (14)
C110.0265 (18)0.0185 (16)0.0197 (16)0.0001 (13)0.0025 (13)0.0010 (13)
Geometric parameters (Å, º) top
Cu1—N11.995 (3)C8—C91.390 (5)
Cu1—Cl22.2787 (10)C8—C71.391 (5)
Cu1—Cl2i2.4081 (10)C8—C111.506 (5)
Cu1—Cl12.5854 (11)C7—C61.383 (5)
Cu2—N2ii2.002 (3)C7—H70.9300
Cu2—Cl12.3173 (10)C1—H10.9300
Cu2—Cl1i2.4118 (10)O1—C111.216 (4)
Cu2—Cl2i2.5343 (11)C9—C101.389 (5)
N1—C11.336 (4)C9—H90.9300
N1—C51.356 (5)C5—C41.378 (5)
C2—C31.389 (5)C5—H50.9300
C2—C11.403 (5)C4—C31.390 (5)
C2—C111.494 (5)C4—H40.9300
N2—C101.343 (5)C3—H30.9300
N2—C61.348 (5)C10—H100.9300
N2—Cu2iii2.002 (3)C6—H60.9300
N1—Cu1—Cl2127.98 (9)C10—N2—Cu2iii122.7 (2)
N1—Cu1—Cl2i104.34 (9)C6—N2—Cu2iii119.9 (2)
Cl2—Cu1—Cl2i107.34 (4)C9—C8—C7118.2 (3)
N1—Cu1—Cl1107.80 (9)C9—C8—C11124.6 (3)
Cl2—Cu1—Cl1101.13 (3)C7—C8—C11117.0 (3)
Cl2i—Cu1—Cl1106.83 (3)C6—C7—C8119.4 (3)
N1—Cu1—Cu2119.49 (9)C6—C7—H7120.3
Cl2—Cu1—Cu2112.32 (3)C8—C7—H7120.3
Cl2i—Cu1—Cu256.78 (3)N1—C1—C2123.5 (3)
Cl1—Cu1—Cu250.09 (2)N1—C1—H1118.2
N2ii—Cu2—Cl1124.54 (9)C2—C1—H1118.2
N2ii—Cu2—Cl1i114.36 (9)C10—C9—C8118.7 (3)
Cl1—Cu2—Cl1i105.97 (4)C10—C9—H9120.7
N2ii—Cu2—Cl2i98.38 (9)C8—C9—H9120.7
Cl1—Cu2—Cl2i111.46 (3)N1—C5—C4123.1 (3)
Cl1i—Cu2—Cl2i99.00 (3)N1—C5—H5118.5
N2ii—Cu2—Cu1126.42 (9)C4—C5—H5118.5
Cl1—Cu2—Cu158.85 (3)C5—C4—C3119.3 (3)
Cl1i—Cu2—Cu1114.14 (3)C5—C4—H4120.3
Cl2i—Cu2—Cu152.64 (3)C3—C4—H4120.3
Cu2—Cl1—Cu2iv105.97 (4)C2—C3—C4118.7 (3)
Cu2—Cl1—Cu171.05 (3)C2—C3—H3120.7
Cu2iv—Cl1—Cu178.15 (3)C4—C3—H3120.7
Cu1—Cl2—Cu1iv107.34 (4)N2—C10—C9123.5 (3)
Cu1—Cl2—Cu2iv81.67 (3)N2—C10—H10118.3
Cu1iv—Cl2—Cu2iv70.58 (3)C9—C10—H10118.3
C1—N1—C5117.2 (3)N2—C6—C7122.9 (3)
C1—N1—Cu1123.7 (2)N2—C6—H6118.6
C5—N1—Cu1119.1 (2)C7—C6—H6118.6
C3—C2—C1118.2 (3)O1—C11—C2120.1 (3)
C3—C2—C11125.2 (3)O1—C11—C8118.1 (3)
C1—C2—C11116.6 (3)C2—C11—C8121.8 (3)
C10—N2—C6117.3 (3)
N1—Cu1—Cu2—N2ii158.68 (15)Cl2—Cu1—N1—C195.8 (3)
Cl2—Cu1—Cu2—N2ii26.27 (12)Cl2i—Cu1—N1—C1138.1 (3)
Cl2i—Cu1—Cu2—N2ii70.41 (11)Cl1—Cu1—N1—C124.8 (3)
Cl1—Cu1—Cu2—N2ii112.18 (12)Cu2—Cu1—N1—C178.4 (3)
N1—Cu1—Cu2—Cl189.14 (10)Cl2—Cu1—N1—C583.7 (3)
Cl2—Cu1—Cu2—Cl185.91 (4)Cl2i—Cu1—N1—C542.4 (3)
Cl2i—Cu1—Cu2—Cl1177.41 (4)Cl1—Cu1—N1—C5155.8 (3)
N1—Cu1—Cu2—Cl1i5.53 (10)Cu2—Cu1—N1—C5102.1 (3)
Cl2—Cu1—Cu2—Cl1i179.41 (4)C9—C8—C7—C60.8 (5)
Cl2i—Cu1—Cu2—Cl1i82.74 (4)C11—C8—C7—C6176.2 (3)
Cl1—Cu1—Cu2—Cl1i94.67 (4)C5—N1—C1—C20.1 (5)
N1—Cu1—Cu2—Cl2i88.27 (10)Cu1—N1—C1—C2179.6 (3)
Cl2—Cu1—Cu2—Cl2i96.67 (4)C3—C2—C1—N10.3 (5)
Cl1—Cu1—Cu2—Cl2i177.41 (4)C11—C2—C1—N1179.3 (3)
N2ii—Cu2—Cl1—Cu2iv44.13 (12)C7—C8—C9—C101.4 (5)
Cl1i—Cu2—Cl1—Cu2iv180.0C11—C8—C9—C10173.6 (3)
Cl2i—Cu2—Cl1—Cu2iv73.30 (4)C1—N1—C5—C40.9 (6)
Cu1—Cu2—Cl1—Cu2iv71.09 (3)Cu1—N1—C5—C4178.6 (3)
N2ii—Cu2—Cl1—Cu1115.22 (11)N1—C5—C4—C31.7 (6)
Cl1i—Cu2—Cl1—Cu1108.91 (3)C1—C2—C3—C40.5 (5)
Cl2i—Cu2—Cl1—Cu12.21 (3)C11—C2—C3—C4179.9 (3)
N1—Cu1—Cl1—Cu2113.91 (9)C5—C4—C3—C21.5 (5)
Cl2—Cu1—Cl1—Cu2109.88 (4)C6—N2—C10—C90.5 (5)
Cl2i—Cu1—Cl1—Cu22.26 (3)Cu2iii—N2—C10—C9175.9 (3)
N1—Cu1—Cl1—Cu2iv134.42 (9)C8—C9—C10—N22.1 (6)
Cl2—Cu1—Cl1—Cu2iv1.79 (3)C10—N2—C6—C71.8 (6)
Cl2i—Cu1—Cl1—Cu2iv113.93 (3)Cu2iii—N2—C6—C7173.7 (3)
Cu2—Cu1—Cl1—Cu2iv111.67 (3)C8—C7—C6—N22.5 (6)
N1—Cu1—Cl2—Cu1iv55.05 (12)C3—C2—C11—O1179.8 (4)
Cl2i—Cu1—Cl2—Cu1iv180.0C1—C2—C11—O10.6 (5)
Cl1—Cu1—Cl2—Cu1iv68.25 (4)C3—C2—C11—C81.3 (5)
Cu2—Cu1—Cl2—Cu1iv119.49 (3)C1—C2—C11—C8178.3 (3)
N1—Cu1—Cl2—Cu2iv121.61 (11)C9—C8—C11—O1131.7 (4)
Cl2i—Cu1—Cl2—Cu2iv113.44 (3)C7—C8—C11—O143.4 (5)
Cl1—Cu1—Cl2—Cu2iv1.69 (3)C9—C8—C11—C249.4 (5)
Cu2—Cu1—Cl2—Cu2iv52.93 (3)C7—C8—C11—C2135.5 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1v0.932.353.112 (5)139
Symmetry code: (v) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C11H8N2O)]
Mr382.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)3.7765 (7), 25.935 (5), 12.339 (2)
β (°) 94.462 (3)
V3)1204.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.96
Crystal size (mm)0.22 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2007)
Tmin, Tmax0.503, 0.731
No. of measured, independent and
observed [I > 2σ(I)] reflections
20010, 2794, 2435
Rint0.042
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.06
No. of reflections2794
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.48

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Selected bond lengths (Å) top
Cu1—N11.995 (3)Cu2—N2ii2.002 (3)
Cu1—Cl22.2787 (10)Cu2—Cl12.3173 (10)
Cu1—Cl2i2.4081 (10)Cu2—Cl1i2.4118 (10)
Cu1—Cl12.5854 (11)Cu2—Cl2i2.5343 (11)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1iii0.932.353.112 (5)139
Symmetry code: (iii) x1, y+3/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMontney, M. R. & LaDuca, R. L. (2008). J. Solid State Chem. 181, 828—836.  Web of Science CSD CrossRef Google Scholar
First citationPalmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2003). CELL-NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds