metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis[2,4-penta­nedionato(1−)]bis­­[4,4,5,5-tetra­methyl­-2-(4-pyrid­yl)-imidazoline-1-oxyl 3-oxide]manganese(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yllctu@yahoo.com.cn

(Received 9 November 2008; accepted 18 November 2008; online 22 November 2008)

In the title compound, [Mn(C5H7O2)2(C12H16N3O2)], the manganese(II) cation (site symmetry [\overline{1}]) is hexa­coordinated by four O and two N atoms in a distorted trans-MnN2O4 octa­hedral geometry. The four O atoms belonging to two 2,4-penta­nedionate anions lie in the equatorial plane and the two N atoms occupy the axial coordination sites.

Related literature

For related structures, see: Caruso et al. (2005[Caruso, U., Centore, R., Panunzi, B., Roviello, A. & Tuzi, A. (2005). Eur. J. Inorg. Chem. pp. 2747-2758.]); Iskander et al. (2001[Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787-2792.]); Rajak et al. (2000[Rajak, K. K., Baruah, B., Rath, S. P. & Chakravorty, A. (2000). Inorg. Chem. 39, 1598-1605.]); Sangeetha et al. (2000[Sangeetha, N. R. & Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357-361.]); Sutradhar et al. (2006[Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150-5158.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H7O2)2(C12H16N3O2)]

  • Mr = 721.71

  • Triclinic, [P \overline 1]

  • a = 7.277 (3) Å

  • b = 9.7167 (15) Å

  • c = 13.2643 (15) Å

  • α = 97.978 (10)°

  • β = 103.342 (10)°

  • γ = 92.869 (10)°

  • V = 900.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.970

  • 6210 measured reflections

  • 3264 independent reflections

  • 2511 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.00

  • 3264 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 1.9964 (17)
Mn1—O3 2.0597 (17)
Mn1—N1 2.242 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To design different kinds of metal-based coordination architectures with appropriate organic radicals and co-ligands has been an important subject during the last decade because of its potential usages for molecule-based magnetic materials and optical devices. Varying the organic units, such as tridentate nitronyl nitroxide radical, and bidentate nitroxide radical could results in a large number of building blocks with the potentional applications. In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the manganese(II) cation is hexacoordinated with four O and two N atoms showing a slightly distorted octahedral geometry. The Mn(II) cation lies on an inversion centre. The four oxygen atoms belonging to two 2,4-pentanedionate lie in the equatorial plane and the two nitrogen atoms lie in the axial coordination sites (Table 1).

Related literature top

For related structures, see: Caruso et al. (2005); Iskander et al. (2001); Rajak et al. (2000); Sangeetha et al. (2000); Sutradhar et al. (2006).

Experimental top

A mixture of manganese(II) acetylacetonate (1 mmol) and 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (1 mmol) in 20 ml methanol was refluxed for several hours. The above cooled solution was filtered and the filtrate was kept in an ice box. One week later, brown blocks of (I) were obtained with a yield of ca 3%. Anal. Calc. for C34H46N6MnO8: C 56.48, H 6.31, N 11.55%; Found: C 56.53, H 6.37, N 11.64%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) around Mn(II), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. The unlabelled atoms are generated by the symmetry operation (-x, -y, -z).
Bis[2,4-pentanedionato(1-)]bis[4,4,5,5-tetramethyl-2-(4-pyridyl)imidazoline-1- oxyl 3-oxide]manganese(II) top
Crystal data top
[Mn(C5H7O2)2(C12H16N3O2)]Z = 1
Mr = 721.71F(000) = 381
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.277 (3) ÅCell parameters from 3264 reflections
b = 9.7167 (15) Åθ = 2.9–25.5°
c = 13.2643 (15) ŵ = 0.42 mm1
α = 97.978 (10)°T = 293 K
β = 103.342 (10)°Block, brown
γ = 92.869 (10)°0.12 × 0.10 × 0.08 mm
V = 900.4 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3264 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 68
Tmin = 0.951, Tmax = 0.970k = 1111
6210 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
3264 reflections(Δ/σ)max = 0.007
229 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Mn(C5H7O2)2(C12H16N3O2)]γ = 92.869 (10)°
Mr = 721.71V = 900.4 (4) Å3
Triclinic, P1Z = 1
a = 7.277 (3) ÅMo Kα radiation
b = 9.7167 (15) ŵ = 0.42 mm1
c = 13.2643 (15) ÅT = 293 K
α = 97.978 (10)°0.12 × 0.10 × 0.08 mm
β = 103.342 (10)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2511 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.970Rint = 0.033
6210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.58 e Å3
3264 reflectionsΔρmin = 0.51 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.0236 (6)
C10.0486 (4)0.2828 (3)0.0582 (2)0.0237 (6)
C20.2048 (4)0.2371 (3)0.0432 (2)0.0249 (6)
C30.3726 (4)0.2936 (3)0.0812 (2)0.0343 (7)
H3A0.48380.24960.05220.052*
H3B0.39460.39260.05890.052*
H3C0.34490.27410.15640.052*
C40.1139 (4)0.3210 (3)0.0232 (2)0.0264 (6)
H40.16720.41220.04670.032*
C50.1320 (4)0.3856 (3)0.1294 (2)0.0319 (7)
H5A0.26650.38300.10190.048*
H5B0.07540.47810.13270.048*
H5C0.10660.36070.19850.048*
C60.1703 (4)0.1166 (3)0.2387 (2)0.0220 (6)
H60.04170.12380.23380.026*
C70.4138 (4)0.0539 (3)0.1578 (2)0.0232 (6)
H70.45390.01870.09840.028*
C80.5526 (4)0.0956 (3)0.2535 (2)0.0246 (6)
H80.68020.08710.25600.030*
C90.2971 (4)0.1612 (3)0.3371 (2)0.0222 (6)
H90.25260.19670.39500.027*
C100.4944 (4)0.1510 (3)0.3461 (2)0.0222 (6)
C110.6315 (4)0.1986 (3)0.4507 (2)0.0222 (6)
C120.9181 (3)0.2690 (3)0.58642 (19)0.0210 (6)
C130.7430 (4)0.2984 (3)0.6343 (2)0.0232 (6)
C140.7504 (4)0.2549 (3)0.7443 (2)0.0307 (7)
H14A0.63610.27700.76520.046*
H14B0.85760.30460.79480.046*
H14C0.76200.15640.74040.046*
C150.6888 (4)0.4434 (3)0.6352 (2)0.0328 (7)
H15A0.68780.47150.56850.049*
H15B0.77860.50450.68940.049*
H15C0.56480.44830.64830.049*
C161.0020 (4)0.1369 (3)0.6128 (2)0.0254 (6)
H16A0.90330.06230.59690.038*
H16B1.06340.14920.68610.038*
H16C1.09300.11470.57220.038*
C171.0770 (4)0.3830 (3)0.6102 (2)0.0260 (6)
H17A1.16890.35650.57110.039*
H17B1.13630.39750.68380.039*
H17C1.02710.46770.59080.039*
N10.2243 (3)0.0629 (2)0.14911 (16)0.0214 (5)
N20.5856 (3)0.2134 (2)0.54863 (17)0.0250 (5)
N30.8188 (3)0.2417 (2)0.46660 (17)0.0221 (5)
O10.1368 (2)0.16513 (17)0.03794 (14)0.0254 (4)
O20.9120 (3)0.25072 (19)0.39302 (14)0.0277 (4)
O30.1567 (2)0.11183 (18)0.07693 (14)0.0259 (4)
O40.4265 (3)0.1723 (2)0.56899 (15)0.0351 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0270 (15)0.0192 (14)0.0214 (15)0.0067 (11)0.0002 (11)0.0001 (11)
C10.0267 (14)0.0198 (13)0.0197 (14)0.0041 (10)0.0057 (11)0.0045 (10)
C20.0244 (14)0.0214 (13)0.0246 (15)0.0003 (10)0.0055 (11)0.0087 (11)
C30.0301 (16)0.0276 (15)0.0445 (19)0.0007 (12)0.0041 (14)0.0122 (13)
C40.0316 (15)0.0180 (13)0.0256 (15)0.0005 (11)0.0013 (12)0.0040 (11)
C50.0373 (17)0.0220 (14)0.0327 (17)0.0074 (12)0.0012 (13)0.0017 (12)
C60.0193 (13)0.0234 (13)0.0245 (15)0.0035 (10)0.0056 (11)0.0061 (11)
C70.0246 (14)0.0242 (13)0.0212 (15)0.0045 (10)0.0052 (11)0.0045 (11)
C80.0208 (14)0.0270 (14)0.0258 (16)0.0026 (10)0.0051 (11)0.0044 (11)
C90.0238 (14)0.0234 (13)0.0199 (14)0.0033 (10)0.0055 (11)0.0038 (10)
C100.0233 (14)0.0217 (13)0.0209 (15)0.0006 (10)0.0035 (11)0.0045 (10)
C110.0230 (14)0.0260 (13)0.0178 (14)0.0022 (10)0.0051 (11)0.0030 (11)
C120.0201 (13)0.0256 (14)0.0151 (14)0.0009 (10)0.0007 (10)0.0026 (10)
C130.0224 (14)0.0268 (14)0.0185 (14)0.0038 (11)0.0009 (11)0.0029 (11)
C140.0270 (15)0.0405 (17)0.0236 (16)0.0033 (12)0.0035 (12)0.0060 (12)
C150.0292 (16)0.0346 (16)0.0330 (18)0.0106 (12)0.0046 (13)0.0017 (13)
C160.0225 (14)0.0250 (14)0.0284 (16)0.0034 (10)0.0040 (12)0.0058 (11)
C170.0254 (14)0.0254 (14)0.0254 (16)0.0013 (11)0.0031 (12)0.0034 (11)
N10.0236 (12)0.0185 (11)0.0221 (13)0.0025 (8)0.0051 (10)0.0039 (9)
N20.0175 (12)0.0340 (13)0.0225 (13)0.0003 (9)0.0038 (9)0.0040 (10)
N30.0192 (11)0.0260 (11)0.0206 (12)0.0014 (9)0.0038 (10)0.0041 (9)
O10.0261 (10)0.0207 (9)0.0268 (11)0.0038 (7)0.0006 (8)0.0039 (8)
O20.0235 (10)0.0367 (11)0.0239 (11)0.0013 (8)0.0087 (8)0.0033 (8)
O30.0280 (10)0.0210 (9)0.0258 (11)0.0002 (7)0.0011 (8)0.0031 (8)
O40.0205 (10)0.0555 (14)0.0309 (12)0.0011 (9)0.0076 (9)0.0113 (10)
Geometric parameters (Å, º) top
Mn1—O1i1.9964 (17)C9—C101.422 (4)
Mn1—O11.9964 (17)C9—H90.9300
Mn1—O32.0597 (17)C10—C111.508 (4)
Mn1—O3i2.0597 (17)C11—N31.365 (3)
Mn1—N12.242 (2)C11—N21.405 (3)
Mn1—N1i2.242 (2)C12—C161.498 (3)
C1—O11.246 (3)C12—C171.507 (3)
C1—C41.417 (4)C12—N31.566 (3)
C1—C51.524 (4)C12—C131.571 (4)
C2—O31.241 (3)C13—C151.482 (4)
C2—C41.415 (4)C13—N21.527 (3)
C2—C31.530 (4)C13—C141.564 (4)
C3—H3A0.9600C14—H14A0.9600
C3—H3B0.9600C14—H14B0.9600
C3—H3C0.9600C14—H14C0.9600
C4—H40.9300C15—H15A0.9600
C5—H5A0.9600C15—H15B0.9600
C5—H5B0.9600C15—H15C0.9600
C5—H5C0.9600C16—H16A0.9600
C6—N11.379 (3)C16—H16B0.9600
C6—C91.412 (4)C16—H16C0.9600
C6—H60.9300C17—H17A0.9600
C7—N11.364 (3)C17—H17B0.9600
C7—C81.421 (4)C17—H17C0.9600
C7—H70.9300N2—O41.304 (3)
C8—C101.434 (4)N3—O21.320 (3)
C8—H80.9300
O1i—Mn1—O1180.0N3—C11—N2108.1 (2)
O1i—Mn1—O387.80 (7)N3—C11—C10126.2 (2)
O1—Mn1—O392.20 (7)N2—C11—C10125.6 (2)
O1i—Mn1—O3i92.20 (7)C16—C12—C17108.1 (2)
O1—Mn1—O3i87.80 (7)C16—C12—N3106.9 (2)
O3—Mn1—O3i180.0C17—C12—N3110.9 (2)
O1i—Mn1—N190.40 (7)C16—C12—C13112.5 (2)
O1—Mn1—N189.60 (7)C17—C12—C13117.4 (2)
O3—Mn1—N189.56 (7)N3—C12—C13100.45 (18)
O3i—Mn1—N190.44 (7)C15—C13—N2103.7 (2)
O1i—Mn1—N1i89.60 (7)C15—C13—C14109.2 (2)
O1—Mn1—N1i90.40 (7)N2—C13—C14112.0 (2)
O3—Mn1—N1i90.44 (7)C15—C13—C12114.0 (2)
O3i—Mn1—N1i89.56 (7)N2—C13—C12100.01 (19)
N1—Mn1—N1i180.0C14—C13—C12116.9 (2)
O1—C1—C4125.9 (2)C13—C14—H14A109.5
O1—C1—C5112.3 (2)C13—C14—H14B109.5
C4—C1—C5121.8 (2)H14A—C14—H14B109.5
O3—C2—C4123.9 (2)C13—C14—H14C109.5
O3—C2—C3113.3 (2)H14A—C14—H14C109.5
C4—C2—C3122.8 (2)H14B—C14—H14C109.5
C2—C3—H3A109.5C13—C15—H15A109.5
C2—C3—H3B109.5C13—C15—H15B109.5
H3A—C3—H3B109.5H15A—C15—H15B109.5
C2—C3—H3C109.5C13—C15—H15C109.5
H3A—C3—H3C109.5H15A—C15—H15C109.5
H3B—C3—H3C109.5H15B—C15—H15C109.5
C2—C4—C1127.8 (2)C12—C16—H16A109.5
C2—C4—H4116.1C12—C16—H16B109.5
C1—C4—H4116.1H16A—C16—H16B109.5
C1—C5—H5A109.5C12—C16—H16C109.5
C1—C5—H5B109.5H16A—C16—H16C109.5
H5A—C5—H5B109.5H16B—C16—H16C109.5
C1—C5—H5C109.5C12—C17—H17A109.5
H5A—C5—H5C109.5C12—C17—H17B109.5
H5B—C5—H5C109.5H17A—C17—H17B109.5
N1—C6—C9124.4 (2)C12—C17—H17C109.5
N1—C6—H6117.8H17A—C17—H17C109.5
C9—C6—H6117.8H17B—C17—H17C109.5
N1—C7—C8123.1 (2)C7—N1—C6116.8 (2)
N1—C7—H7118.5C7—N1—Mn1124.50 (17)
C8—C7—H7118.5C6—N1—Mn1118.67 (16)
C7—C8—C10119.5 (2)O4—N2—C11127.6 (2)
C7—C8—H8120.2O4—N2—C13120.6 (2)
C10—C8—H8120.2C11—N2—C13111.6 (2)
C6—C9—C10118.6 (2)O2—N3—C11126.1 (2)
C6—C9—H9120.7O2—N3—C12122.78 (18)
C10—C9—H9120.7C11—N3—C12110.91 (19)
C9—C10—C8117.6 (2)C1—O1—Mn1118.40 (17)
C9—C10—C11119.2 (2)C2—O3—Mn1119.22 (17)
C8—C10—C11123.2 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C5H7O2)2(C12H16N3O2)]
Mr721.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.277 (3), 9.7167 (15), 13.2643 (15)
α, β, γ (°)97.978 (10), 103.342 (10), 92.869 (10)
V3)900.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.951, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
6210, 3264, 2511
Rint0.033
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.00
No. of reflections3264
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O11.9964 (17)Mn1—N12.242 (2)
Mn1—O32.0597 (17)
 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105-07).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaruso, U., Centore, R., Panunzi, B., Roviello, A. & Tuzi, A. (2005). Eur. J. Inorg. Chem. pp. 2747–2758.  Web of Science CSD CrossRef Google Scholar
First citationIskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2792.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajak, K. K., Baruah, B., Rath, S. P. & Chakravorty, A. (2000). Inorg. Chem. 39, 1598–1605.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSangeetha, N. R. & Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357–361.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5158.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds