metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1605-m1606
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: catena-Poly[[aqua­(2,2′-bi­pyridyl)cobalt(II)]-μ-5-nitro­isophthalato]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yllctu@yahoo.com.cn

(Received 13 November 2008; accepted 17 November 2008; online 22 November 2008)

In the crystal structure of the title compound, [Co(C8H3NO6)(C10H8N2)(H2O)]n, there are two symmetry-independent one-dimensional coordination polymers, which are approximately related by noncrystallographic inversion symmetry. Each zigzag chain is constructed from one CoII ion, one O-monodentate 5-nitro­isophthalate (ndc) dianion, one N,N′-bidentate 2,2′-bipyridyl ligand and one water mol­ecule. A symmetry-generated O,O′-bidentate ndc dianion completes the cobalt coordination environment, which could be described as very distorted cis-CoN2O4 octa­hedral. The bridging ndc ligands result in parallel chains running along the a direction, and O—H⋯O hydrogen bonds arising from the water mol­ecules complete the structure.

Related literature

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); and in biological systems, see: Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H3NO6)(C10H8N2)(H2O)]

  • Mr = 442.24

  • Monoclinic, P 21 /n

  • a = 10.0125 (10) Å

  • b = 23.575 (2) Å

  • c = 15.403 (2) Å

  • β = 97.28 (1)°

  • V = 3606.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.825

  • 18893 measured reflections

  • 6672 independent reflections

  • 5103 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.01

  • 6672 reflections

  • 535 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N2 2.065 (2)
Co1—N1 2.075 (2)
Co1—O2 2.0369 (19)
Co1—O1W 2.102 (2)
Co1—O5i 2.131 (2)
Co1—O6i 2.257 (2)
Co2—N3 2.073 (2)
Co2—N4 2.078 (3)
Co2—O12 2.031 (2)
Co2—O2W 2.089 (2)
Co2—O10ii 2.116 (2)
Co2—O9ii 2.294 (2)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O12i 0.830 (10) 2.01 (2) 2.771 (3) 153 (3)
O2W—H4W⋯O2ii 0.831 (10) 1.957 (17) 2.747 (3) 159 (3)
O1W—H2W⋯O9 0.830 (10) 2.05 (2) 2.763 (3) 143 (3)
O2W—H3W⋯O6 0.835 (10) 2.10 (3) 2.781 (3) 138 (3)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959) and in biological systems (Okabe & Oya, 2000). The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 5-nitroisophthalic acid as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound, (I), (Fig. 1).

Compound (I) is constructed from two zigzag chains, each containing one CoII atom, one O-monodentate 5-nitroisophthalato (ndc) dianion, one N,N-bidentate 2,2'-bipyridyl ligand and one water molecule. A symmetry-generated, O,O-bidentate ndc dianion completes the cobalt coordination, which could be described as very distorted cis-CoN2O4 octahedral (Table 1). The bridging ndc ligands result in parallel chains running along the a direction (Fig. 2) and O—H···O hydrogen bonds arising from the water molecules (Table 2) complete the structure (Fig. 3).

Related literature top

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959); and in biological systems, see: Okabe & Oya (2000).

Experimental top

A mixture of cobalt dichloride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), and 5-nitroisophthalic acid (0.5 mmol) in H2O (8 ml) and ethanol (8 ml) sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 413 K for three days. Red blocks of (I) were obtained after cooling to room temperature with a yield of 27%. Anal. Calc. for C18H13CoN3O7: C 48.34, H 2.91, N 10.74%; Found: C 48.30, H 2.84, N 10.69%.

Refinement top

The H atoms of the water molecules were located from difference density maps and were refined with distance restraints of H···H = 1.38 (2) Å, O—H = 0.88 (2) Å, and with a fixed Uiso of 0.80 Å2. All other H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), extended to show the Co coordination spheres, showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry codes: O5A, O6A; A = (1+x, y, z), O9A, O10A, A = (x-1, y, z).
[Figure 2] Fig. 2. Part of a one-dimensional polymeric chain in (I)
[Figure 3] Fig. 3. The packing diagram of (I) formed with the hydrogen bonds.
catena-Poly[[aqua(2,2'-bipyridyl)cobalt(II)]-µ-5-nitroisophthalato] top
Crystal data top
[Co(C8H3NO6)(C10H8N2)(H2O)]F(000) = 1800
Mr = 442.24Dx = 1.629 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6672 reflections
a = 10.0125 (10) Åθ = 1.7–25.5°
b = 23.575 (2) ŵ = 1.00 mm1
c = 15.403 (2) ÅT = 293 K
β = 97.28 (1)°Block, red
V = 3606.3 (7) Å30.43 × 0.28 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
6672 independent reflections
Radiation source: fine-focus sealed tube5103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.673, Tmax = 0.825k = 2822
18893 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0548P)2 + 2.8058P]
where P = (Fo2 + 2Fc2)/3
6672 reflections(Δ/σ)max = 0.032
535 parametersΔρmax = 0.95 e Å3
6 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C8H3NO6)(C10H8N2)(H2O)]V = 3606.3 (7) Å3
Mr = 442.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.0125 (10) ŵ = 1.00 mm1
b = 23.575 (2) ÅT = 293 K
c = 15.403 (2) Å0.43 × 0.28 × 0.20 mm
β = 97.28 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5103 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.825Rint = 0.025
18893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.95 e Å3
6672 reflectionsΔρmin = 0.29 e Å3
535 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.16169 (4)0.154445 (14)0.85573 (2)0.02466 (11)
Co20.12374 (4)0.354444 (15)0.93350 (3)0.02797 (12)
C10.0858 (3)0.43912 (15)0.7845 (2)0.0469 (8)
H10.07150.40730.74890.056*
C20.0708 (4)0.49272 (17)0.7466 (3)0.0555 (10)
H20.04820.49630.68640.067*
C30.0893 (4)0.54031 (16)0.7979 (3)0.0570 (10)
H30.08100.57630.77310.068*
C40.1204 (3)0.53368 (14)0.8864 (3)0.0474 (9)
H40.13070.56510.92310.057*
C50.1365 (3)0.47893 (12)0.9205 (2)0.0363 (7)
C60.1704 (3)0.46688 (12)1.0143 (2)0.0361 (7)
C70.1997 (3)0.50925 (14)1.0774 (3)0.0490 (9)
H70.19780.54741.06160.059*
C80.2313 (3)0.49307 (17)1.1631 (3)0.0557 (10)
H80.25060.52031.20670.067*
C90.2341 (4)0.43613 (17)1.1843 (3)0.0559 (10)
H90.25690.42481.24210.067*
C100.2034 (3)0.39623 (15)1.1200 (2)0.0468 (8)
H100.20490.35801.13510.056*
C110.5280 (3)0.24937 (12)1.02748 (19)0.0320 (6)
H110.44490.23521.03800.038*
C120.6449 (3)0.22104 (12)1.05893 (19)0.0321 (6)
C130.7703 (3)0.24074 (12)1.04616 (19)0.0327 (7)
H130.84790.22131.06850.039*
C140.7776 (3)0.29080 (11)0.99863 (18)0.0271 (6)
C150.9110 (3)0.31378 (12)0.9803 (2)0.0312 (6)
C160.6606 (3)0.31947 (12)0.96577 (18)0.0286 (6)
H160.66660.35270.93390.034*
C170.5354 (3)0.29914 (12)0.98002 (18)0.0288 (6)
C180.4121 (3)0.33266 (13)0.9446 (2)0.0325 (7)
C191.1953 (4)0.07221 (15)1.0079 (2)0.0512 (9)
H191.21370.10441.04240.061*
C201.2036 (5)0.01944 (18)1.0474 (3)0.0684 (12)
H201.22680.01641.10760.082*
C211.1774 (5)0.02879 (17)0.9971 (3)0.0688 (12)
H211.18130.06451.02300.083*
C221.1455 (4)0.02303 (14)0.9087 (2)0.0526 (9)
H221.12890.05470.87310.063*
C231.1386 (3)0.03108 (12)0.8732 (2)0.0327 (7)
C241.1073 (3)0.04138 (12)0.7783 (2)0.0314 (6)
C251.0794 (3)0.00192 (13)0.7180 (2)0.0411 (8)
H251.07870.03960.73570.049*
C261.0526 (3)0.01263 (15)0.6307 (2)0.0456 (8)
H261.03290.01520.58830.055*
C271.0556 (3)0.06936 (15)0.6071 (2)0.0459 (8)
H271.03650.07980.54860.055*
C281.0866 (3)0.11017 (13)0.6701 (2)0.0381 (7)
H281.08890.14800.65320.046*
C290.8750 (3)0.17566 (13)0.8380 (2)0.0336 (7)
C300.7500 (3)0.20949 (12)0.80607 (18)0.0274 (6)
C310.7569 (3)0.26263 (12)0.76643 (19)0.0314 (6)
H310.83960.27800.75750.038*
C320.6258 (3)0.18764 (12)0.81981 (19)0.0297 (6)
H320.62100.15290.84770.036*
C330.6392 (3)0.29172 (12)0.7409 (2)0.0347 (7)
C340.5084 (3)0.21757 (12)0.79203 (18)0.0273 (6)
C350.5143 (3)0.27061 (13)0.75206 (19)0.0332 (7)
H350.43630.29100.73360.040*
C360.3756 (3)0.19401 (13)0.8104 (2)0.0331 (7)
H1W1.243 (3)0.2304 (11)0.958 (3)0.080*
H2W1.126 (2)0.2153 (14)0.989 (3)0.080*
H3W0.164 (2)0.2956 (15)0.803 (3)0.080*
H4W0.042 (3)0.2778 (10)0.823 (3)0.080*
N11.1134 (2)0.09709 (10)0.75443 (15)0.0302 (5)
N21.1617 (3)0.07823 (10)0.92182 (16)0.0349 (6)
N30.1199 (2)0.43207 (10)0.87001 (17)0.0349 (6)
N40.1713 (2)0.41090 (10)1.03641 (17)0.0361 (6)
N50.6352 (3)0.16753 (12)1.10790 (19)0.0477 (7)
N60.6479 (3)0.34937 (13)0.7036 (2)0.0578 (9)
O10.8634 (2)0.12806 (12)0.8691 (2)0.0705 (9)
O20.98644 (19)0.19824 (8)0.82627 (15)0.0379 (5)
O30.7556 (3)0.37273 (12)0.7088 (2)0.0801 (10)
O40.5459 (3)0.37066 (17)0.6681 (3)0.1342 (19)
O50.3733 (2)0.14822 (9)0.85254 (16)0.0440 (6)
O60.26919 (19)0.22039 (9)0.78407 (15)0.0422 (5)
O70.5264 (3)0.14506 (14)1.1063 (2)0.0932 (12)
O80.7366 (3)0.14819 (11)1.14856 (19)0.0642 (8)
O91.0167 (2)0.28717 (9)1.00726 (15)0.0411 (5)
O100.9137 (2)0.35927 (9)0.93795 (16)0.0442 (6)
O110.4241 (2)0.37689 (11)0.90426 (18)0.0586 (7)
O120.30031 (19)0.31194 (9)0.96161 (15)0.0409 (5)
O1W1.1948 (2)0.20370 (8)0.97017 (15)0.0371 (5)
O2W0.0917 (2)0.30554 (8)0.81966 (16)0.0374 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01864 (19)0.02268 (19)0.0325 (2)0.00142 (14)0.00270 (15)0.00151 (15)
Co20.01822 (19)0.0237 (2)0.0425 (2)0.00121 (14)0.00602 (16)0.00113 (16)
C10.0428 (19)0.048 (2)0.052 (2)0.0030 (15)0.0148 (16)0.0066 (16)
C20.046 (2)0.065 (3)0.057 (2)0.0082 (18)0.0139 (18)0.024 (2)
C30.043 (2)0.042 (2)0.090 (3)0.0027 (16)0.020 (2)0.026 (2)
C40.0326 (18)0.0322 (17)0.080 (3)0.0017 (14)0.0173 (17)0.0057 (17)
C50.0193 (14)0.0299 (15)0.062 (2)0.0004 (12)0.0141 (14)0.0001 (14)
C60.0188 (14)0.0342 (16)0.057 (2)0.0007 (12)0.0101 (13)0.0045 (14)
C70.0352 (18)0.0352 (18)0.078 (3)0.0024 (14)0.0127 (18)0.0098 (17)
C80.038 (2)0.067 (3)0.062 (3)0.0018 (17)0.0042 (18)0.022 (2)
C90.043 (2)0.073 (3)0.052 (2)0.0057 (18)0.0078 (17)0.0072 (19)
C100.0398 (19)0.051 (2)0.050 (2)0.0067 (16)0.0065 (16)0.0001 (17)
C110.0204 (14)0.0411 (16)0.0348 (17)0.0058 (12)0.0051 (12)0.0010 (13)
C120.0267 (15)0.0373 (16)0.0323 (16)0.0020 (12)0.0039 (12)0.0048 (12)
C130.0210 (14)0.0419 (17)0.0347 (17)0.0023 (12)0.0012 (12)0.0005 (13)
C140.0194 (14)0.0317 (14)0.0313 (15)0.0005 (11)0.0069 (11)0.0043 (12)
C150.0185 (14)0.0359 (16)0.0403 (17)0.0013 (12)0.0077 (12)0.0087 (13)
C160.0228 (14)0.0299 (14)0.0336 (16)0.0011 (11)0.0054 (12)0.0007 (12)
C170.0194 (14)0.0358 (16)0.0310 (16)0.0001 (11)0.0023 (11)0.0047 (12)
C180.0209 (15)0.0387 (17)0.0373 (17)0.0023 (12)0.0010 (12)0.0054 (13)
C190.070 (3)0.048 (2)0.0355 (19)0.0013 (18)0.0076 (17)0.0048 (15)
C200.102 (4)0.065 (3)0.038 (2)0.005 (2)0.009 (2)0.0146 (19)
C210.096 (3)0.046 (2)0.063 (3)0.002 (2)0.008 (2)0.030 (2)
C220.068 (3)0.0338 (18)0.056 (2)0.0038 (17)0.0053 (19)0.0100 (16)
C230.0258 (15)0.0308 (15)0.0415 (18)0.0007 (12)0.0043 (12)0.0044 (13)
C240.0230 (14)0.0304 (15)0.0408 (17)0.0015 (12)0.0042 (12)0.0016 (13)
C250.0343 (17)0.0329 (16)0.056 (2)0.0028 (13)0.0052 (15)0.0044 (15)
C260.0389 (19)0.051 (2)0.046 (2)0.0031 (15)0.0035 (15)0.0147 (16)
C270.045 (2)0.055 (2)0.0367 (18)0.0019 (16)0.0003 (15)0.0041 (15)
C280.0405 (18)0.0378 (17)0.0353 (17)0.0061 (14)0.0027 (14)0.0054 (13)
C290.0221 (15)0.0413 (17)0.0369 (17)0.0018 (13)0.0017 (12)0.0045 (13)
C300.0185 (14)0.0351 (15)0.0285 (15)0.0014 (11)0.0021 (11)0.0006 (12)
C310.0192 (14)0.0402 (16)0.0351 (16)0.0014 (12)0.0045 (12)0.0051 (13)
C320.0256 (15)0.0311 (15)0.0328 (15)0.0014 (12)0.0060 (12)0.0004 (12)
C330.0303 (16)0.0368 (16)0.0379 (17)0.0033 (13)0.0078 (13)0.0108 (13)
C340.0193 (13)0.0346 (15)0.0284 (15)0.0007 (11)0.0047 (11)0.0063 (12)
C350.0215 (14)0.0439 (17)0.0340 (16)0.0086 (12)0.0030 (12)0.0023 (13)
C360.0240 (15)0.0401 (17)0.0361 (17)0.0022 (13)0.0070 (12)0.0110 (13)
N10.0251 (12)0.0298 (12)0.0358 (14)0.0034 (10)0.0039 (10)0.0004 (10)
N20.0335 (14)0.0349 (14)0.0369 (15)0.0008 (11)0.0067 (11)0.0042 (11)
N30.0247 (13)0.0352 (14)0.0458 (17)0.0018 (10)0.0085 (11)0.0055 (11)
N40.0264 (13)0.0343 (14)0.0483 (16)0.0041 (10)0.0079 (11)0.0007 (11)
N50.0348 (16)0.0546 (17)0.0532 (18)0.0040 (14)0.0034 (13)0.0203 (14)
N60.0458 (19)0.0573 (19)0.073 (2)0.0145 (16)0.0191 (16)0.0331 (16)
O10.0359 (14)0.0722 (18)0.105 (2)0.0136 (13)0.0152 (14)0.0578 (17)
O20.0161 (10)0.0346 (11)0.0623 (14)0.0004 (8)0.0022 (9)0.0024 (10)
O30.065 (2)0.0644 (18)0.108 (2)0.0176 (15)0.0012 (17)0.0410 (17)
O40.0504 (19)0.129 (3)0.228 (5)0.039 (2)0.036 (2)0.134 (3)
O50.0274 (12)0.0441 (13)0.0621 (15)0.0034 (9)0.0117 (10)0.0051 (11)
O60.0187 (10)0.0491 (13)0.0594 (15)0.0039 (9)0.0073 (10)0.0021 (11)
O70.0504 (18)0.100 (2)0.123 (3)0.0321 (16)0.0136 (18)0.068 (2)
O80.0439 (15)0.0619 (17)0.087 (2)0.0111 (12)0.0070 (14)0.0357 (14)
O90.0185 (10)0.0453 (12)0.0603 (14)0.0035 (9)0.0079 (10)0.0007 (10)
O100.0276 (11)0.0363 (12)0.0711 (16)0.0028 (9)0.0161 (11)0.0094 (11)
O110.0374 (14)0.0576 (16)0.0799 (18)0.0077 (11)0.0040 (13)0.0303 (14)
O120.0190 (10)0.0378 (12)0.0658 (15)0.0009 (9)0.0052 (10)0.0032 (10)
O1W0.0303 (12)0.0335 (11)0.0465 (13)0.0030 (9)0.0009 (10)0.0036 (9)
O2W0.0287 (11)0.0335 (11)0.0502 (13)0.0025 (9)0.0050 (10)0.0004 (10)
Geometric parameters (Å, º) top
Co1—N22.065 (2)C19—C201.382 (5)
Co1—N12.075 (2)C19—H190.9300
Co1—O22.0369 (19)C20—C211.382 (6)
Co1—O1W2.102 (2)C20—H200.9300
Co1—O5i2.131 (2)C21—C221.365 (5)
Co1—O6i2.257 (2)C21—H210.9300
Co2—N32.073 (2)C22—C231.386 (4)
Co2—N42.078 (3)C22—H220.9300
Co2—O122.031 (2)C23—N21.344 (4)
Co2—O2W2.089 (2)C23—C241.475 (4)
Co2—O10ii2.116 (2)C24—N11.367 (4)
Co2—O9ii2.294 (2)C24—C251.385 (4)
C1—N31.329 (4)C25—C261.380 (5)
C1—C21.392 (5)C25—H250.9300
C1—H10.9300C26—C271.387 (5)
C2—C31.372 (6)C26—H260.9300
C2—H20.9300C27—C281.374 (4)
C3—C41.367 (6)C27—H270.9300
C3—H30.9300C28—N11.329 (4)
C4—C51.395 (4)C28—H280.9300
C4—H40.9300C29—O11.231 (4)
C5—N31.349 (4)C29—O21.270 (3)
C5—C61.470 (5)C29—C301.513 (4)
C6—N41.362 (4)C30—C321.386 (4)
C6—C71.398 (5)C30—C311.399 (4)
C7—C81.373 (5)C31—C331.377 (4)
C7—H70.9300C31—H310.9300
C8—C91.381 (5)C32—C341.391 (4)
C8—H80.9300C32—H320.9300
C9—C101.372 (5)C33—C351.377 (4)
C9—H90.9300C33—N61.482 (4)
C10—N41.332 (4)C34—C351.398 (4)
C10—H100.9300C34—C361.500 (4)
C11—C121.381 (4)C35—H350.9300
C11—C171.389 (4)C36—O61.256 (3)
C11—H110.9300C36—O51.261 (4)
C12—C131.376 (4)C36—Co1ii2.515 (3)
C12—N51.479 (4)N5—O71.209 (4)
C13—C141.396 (4)N5—O81.212 (3)
C13—H130.9300N6—O31.204 (4)
C14—C161.390 (4)N6—O41.205 (4)
C14—C151.501 (4)O5—Co1ii2.131 (2)
C15—O91.255 (3)O6—Co1ii2.257 (2)
C15—O101.257 (4)O9—Co2i2.294 (2)
C16—C171.386 (4)O10—Co2i2.116 (2)
C16—H160.9300O1W—H1W0.830 (10)
C17—C181.508 (4)O1W—H2W0.830 (10)
C18—O111.228 (4)O2W—H3W0.835 (10)
C18—O121.278 (3)O2W—H4W0.831 (10)
C19—N21.334 (4)
O2—Co1—N2119.80 (9)C20—C19—H19119.1
O2—Co1—N192.92 (9)C19—C20—C21119.9 (4)
N2—Co1—N177.83 (9)C19—C20—H20120.1
O2—Co1—O1W86.94 (8)C21—C20—H20120.1
N2—Co1—O1W94.42 (9)C22—C21—C20118.7 (3)
N1—Co1—O1W171.00 (9)C22—C21—H21120.6
O2—Co1—O5i149.41 (9)C20—C21—H21120.6
N2—Co1—O5i90.78 (9)C21—C22—C23118.6 (3)
N1—Co1—O5i94.31 (9)C21—C22—H22120.7
O1W—Co1—O5i90.33 (9)C23—C22—H22120.7
O2—Co1—O6i89.58 (8)N2—C23—C22123.0 (3)
N2—Co1—O6i150.47 (9)N2—C23—C24114.6 (2)
N1—Co1—O6i99.27 (9)C22—C23—C24122.4 (3)
O1W—Co1—O6i89.73 (8)N1—C24—C25122.7 (3)
O5i—Co1—O6i59.93 (8)N1—C24—C23114.4 (2)
O12—Co2—N3119.99 (9)C25—C24—C23122.9 (3)
O12—Co2—N492.54 (9)C26—C25—C24117.9 (3)
N3—Co2—N477.48 (10)C26—C25—H25121.0
O12—Co2—O2W86.76 (9)C24—C25—H25121.0
N3—Co2—O2W95.71 (9)C25—C26—C27119.2 (3)
N4—Co2—O2W171.71 (10)C25—C26—H26120.4
O12—Co2—O10ii149.51 (9)C27—C26—H26120.4
N3—Co2—O10ii90.50 (9)C28—C27—C26120.0 (3)
N4—Co2—O10ii94.22 (9)C28—C27—H27120.0
O2W—Co2—O10ii90.54 (9)C26—C27—H27120.0
O12—Co2—O9ii90.11 (8)N1—C28—C27121.8 (3)
N3—Co2—O9ii149.55 (8)N1—C28—H28119.1
N4—Co2—O9ii98.13 (9)C27—C28—H28119.1
O2W—Co2—O9ii90.14 (8)O1—C29—O2124.4 (3)
O10ii—Co2—O9ii59.50 (8)O1—C29—C30119.5 (3)
N3—C1—C2122.0 (4)O2—C29—C30116.0 (3)
N3—C1—H1119.0C32—C30—C31119.6 (2)
C2—C1—H1119.0C32—C30—C29118.4 (3)
C3—C2—C1120.1 (4)C31—C30—C29121.9 (2)
C3—C2—H2120.0C33—C31—C30118.9 (3)
C1—C2—H2120.0C33—C31—H31120.6
C4—C3—C2118.6 (3)C30—C31—H31120.6
C4—C3—H3120.7C30—C32—C34120.3 (3)
C2—C3—H3120.7C30—C32—H32119.9
C3—C4—C5118.8 (3)C34—C32—H32119.9
C3—C4—H4120.6C35—C33—C31122.8 (3)
C5—C4—H4120.6C35—C33—N6118.6 (3)
N3—C5—C4122.7 (3)C31—C33—N6118.5 (3)
N3—C5—C6113.9 (3)C32—C34—C35120.5 (3)
C4—C5—C6123.4 (3)C32—C34—C36119.2 (3)
N4—C6—C7121.6 (3)C35—C34—C36120.2 (2)
N4—C6—C5115.2 (3)C33—C35—C34117.9 (3)
C7—C6—C5123.2 (3)C33—C35—H35121.0
C8—C7—C6118.2 (3)C34—C35—H35121.0
C8—C7—H7120.9O6—C36—O5121.3 (3)
C6—C7—H7120.9O6—C36—C34119.4 (3)
C7—C8—C9119.5 (3)O5—C36—C34119.3 (3)
C7—C8—H8120.2O6—C36—Co1ii63.61 (16)
C9—C8—H8120.3O5—C36—Co1ii57.85 (15)
C10—C9—C8120.0 (4)C34—C36—Co1ii174.8 (2)
C10—C9—H9120.0C28—N1—C24118.4 (3)
C8—C9—H9120.0C28—N1—Co1125.6 (2)
N4—C10—C9121.6 (3)C24—N1—Co1115.95 (19)
N4—C10—H10119.2C19—N2—C23118.0 (3)
C9—C10—H10119.2C19—N2—Co1124.5 (2)
C12—C11—C17119.6 (3)C23—N2—Co1117.12 (19)
C12—C11—H11120.2C1—N3—C5117.8 (3)
C17—C11—H11120.2C1—N3—Co2124.4 (2)
C13—C12—C11122.3 (3)C5—N3—Co2117.2 (2)
C13—C12—N5118.7 (3)C10—N4—C6119.1 (3)
C11—C12—N5119.0 (3)C10—N4—Co2125.1 (2)
C12—C13—C14118.0 (3)C6—N4—Co2115.9 (2)
C12—C13—H13121.0O7—N5—O8122.6 (3)
C14—C13—H13121.0O7—N5—C12118.7 (3)
C16—C14—C13120.3 (3)O8—N5—C12118.7 (3)
C16—C14—C15119.0 (3)O3—N6—O4122.7 (3)
C13—C14—C15120.7 (2)O3—N6—C33119.3 (3)
O9—C15—O10121.7 (3)O4—N6—C33118.0 (3)
O9—C15—C14119.4 (3)C29—O2—Co1120.23 (19)
O10—C15—C14118.9 (2)C36—O5—Co1ii92.08 (17)
C17—C16—C14120.8 (3)C36—O6—Co1ii86.49 (18)
C17—C16—H16119.6C15—O9—Co2i85.29 (18)
C14—C16—H16119.6C15—O10—Co2i93.31 (17)
C16—C17—C11119.0 (3)C18—O12—Co2121.93 (19)
C16—C17—C18118.5 (3)Co1—O1W—H1W105 (3)
C11—C17—C18122.5 (3)Co1—O1W—H2W115 (3)
O11—C18—O12124.9 (3)H1W—O1W—H2W111.4 (18)
O11—C18—C17120.0 (3)Co2—O2W—H3W111 (3)
O12—C18—C17115.1 (3)Co2—O2W—H4W114 (3)
N2—C19—C20121.7 (3)H3W—O2W—H4W111.0 (17)
N2—C19—H19119.1
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O12i0.83 (1)2.01 (2)2.771 (3)153 (3)
O2W—H4W···O2ii0.83 (1)1.96 (2)2.747 (3)159 (3)
O1W—H2W···O90.83 (1)2.05 (2)2.763 (3)143 (3)
O2W—H3W···O60.84 (1)2.10 (3)2.781 (3)138 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C8H3NO6)(C10H8N2)(H2O)]
Mr442.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0125 (10), 23.575 (2), 15.403 (2)
β (°) 97.28 (1)
V3)3606.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.43 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.673, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
18893, 6672, 5103
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.01
No. of reflections6672
No. of parameters535
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N22.065 (2)Co2—N32.073 (2)
Co1—N12.075 (2)Co2—N42.078 (3)
Co1—O22.0369 (19)Co2—O122.031 (2)
Co1—O1W2.102 (2)Co2—O2W2.089 (2)
Co1—O5i2.131 (2)Co2—O10ii2.116 (2)
Co1—O6i2.257 (2)Co2—O9ii2.294 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O12i0.830 (10)2.01 (2)2.771 (3)153 (3)
O2W—H4W···O2ii0.831 (10)1.957 (17)2.747 (3)159 (3)
O1W—H2W···O90.830 (10)2.05 (2)2.763 (3)143 (3)
O2W—H3W···O60.835 (10)2.10 (3)2.781 (3)138 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 20501011) and are grateful for financial support from Liaocheng University (grant No. X071011).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1605-m1606
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds