organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2-pyrid­yl)aniline

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 November 2008; accepted 19 November 2008; online 26 November 2008)

There are two mol­ecules in the asymmetric unit of the title compound, C11H9ClN2, with dihedral angles of 41.84 (12) and 49.24 (12)° between the aromatic ring planes. The two mol­ecules form a dimer via a pair of N—H⋯N hydrogen bonds.

Related literature

For the structures of the two modifications of N-(pyrazin-2-yl)aniline, see: Abdullah & Ng (2008[Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2106.]); Wan Saffiee et al. (2008[Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClN2

  • Mr = 204.65

  • Monoclinic, P 21 /n

  • a = 15.5096 (4) Å

  • b = 7.5519 (2) Å

  • c = 17.6846 (4) Å

  • β = 106.284 (2)°

  • V = 1988.25 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 (2) K

  • 0.42 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttigen, Germany.]) Tmin = 0.870, Tmax = 0.990

  • 18472 measured reflections

  • 4565 independent reflections

  • 2369 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 1.00

  • 4565 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4 0.87 (1) 2.16 (1) 3.018 (3) 170 (2)
N3—H3⋯N2 0.86 (1) 2.22 (1) 3.071 (3) 171 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

For related structures, see: Abdullah & Ng (2008); Wan Saffiee et al. (2008). For the molecular structure of the title compound, (I), see Fig. 1. For hydrogen bond data, see Table 1.

Related literature top

For the structures of the two modifications of N-(pyrazin-2-yl)aniline, see: Abdullah & Ng (2008); Wan Saffiee et al. (2008).

Experimental top

2-Chloropyrazine (0.11 g, 0.1 mmol) and 4-chloroaniline (0.13 g, 0.1 mmol) were heated at 423–433 K for 5 h. The mixture was cooled and dissolved in water. The solution was extracted with ether. The ether extract was dried over sodium sulfate and the solvent evaporated to yield a dark brown compound. Colourless rods of (I) were separated manually.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with U(H) = 1.2U(C). The amino H-atoms were located in a difference map, and were refined with a distance restraint of N–H = 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) drawn at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Chloro-N-(2-pyridyl)aniline top
Crystal data top
C11H9ClN2F(000) = 848
Mr = 204.65Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2114 reflections
a = 15.5096 (4) Åθ = 2.4–21.4°
b = 7.5519 (2) ŵ = 0.34 mm1
c = 17.6846 (4) ÅT = 296 K
β = 106.284 (2)°Rod, colourless
V = 1988.25 (9) Å30.42 × 0.06 × 0.03 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
4565 independent reflections
Radiation source: fine-focus sealed tube2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.870, Tmax = 0.990k = 99
18472 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3184P]
where P = (Fo2 + 2Fc2)/3
4565 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H9ClN2V = 1988.25 (9) Å3
Mr = 204.65Z = 8
Monoclinic, P21/nMo Kα radiation
a = 15.5096 (4) ŵ = 0.34 mm1
b = 7.5519 (2) ÅT = 296 K
c = 17.6846 (4) Å0.42 × 0.06 × 0.03 mm
β = 106.284 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4565 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2369 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.990Rint = 0.041
18472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.15 e Å3
4565 reflectionsΔρmin = 0.24 e Å3
261 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67109 (6)0.86166 (11)0.13818 (4)0.0915 (3)
Cl20.52605 (6)0.65436 (13)0.94056 (4)0.1027 (3)
N10.67429 (13)0.7765 (3)0.47124 (11)0.0625 (5)
H10.6219 (9)0.782 (3)0.4794 (14)0.074 (8)*
N20.72018 (12)0.7057 (3)0.60159 (11)0.0625 (5)
N30.52408 (13)0.6934 (3)0.60693 (11)0.0651 (6)
H30.5772 (9)0.691 (3)0.6004 (13)0.064 (7)*
N40.48220 (12)0.7816 (3)0.47849 (11)0.0634 (5)
C10.78370 (17)0.6465 (4)0.66437 (14)0.0710 (7)
H1A0.76880.63750.71160.085*
C20.86856 (17)0.5984 (4)0.66472 (15)0.0743 (8)
H20.90990.55710.71020.089*
C30.89013 (16)0.6137 (3)0.59455 (15)0.0693 (7)
H3A0.94730.58280.59210.083*
C40.82822 (15)0.6738 (3)0.52878 (14)0.0614 (6)
H40.84250.68420.48130.074*
C50.74264 (14)0.7197 (3)0.53411 (13)0.0528 (6)
C60.67699 (14)0.7960 (3)0.39292 (12)0.0517 (5)
C70.74402 (15)0.8895 (3)0.37290 (14)0.0626 (6)
H70.79020.94070.41220.075*
C80.74268 (16)0.9074 (3)0.29468 (15)0.0648 (7)
H80.78890.96700.28150.078*
C90.67292 (17)0.8368 (3)0.23664 (14)0.0590 (6)
C100.60499 (15)0.7467 (3)0.25551 (13)0.0571 (6)
H100.55760.70030.21600.069*
C110.60754 (14)0.7255 (3)0.33346 (13)0.0532 (6)
H110.56190.66300.34630.064*
C120.41850 (17)0.8195 (4)0.41237 (14)0.0756 (8)
H120.43680.85690.36920.091*
C130.32900 (18)0.8074 (4)0.40351 (15)0.0787 (8)
H130.28730.83890.35650.094*
C140.30224 (16)0.7468 (4)0.46686 (15)0.0747 (8)
H140.24150.73350.46280.090*
C150.36502 (15)0.7066 (3)0.53537 (14)0.0654 (7)
H150.34780.66470.57840.078*
C160.45526 (14)0.7290 (3)0.54015 (13)0.0546 (6)
C170.52001 (13)0.6854 (3)0.68456 (12)0.0504 (5)
C180.45807 (15)0.7767 (3)0.71257 (13)0.0573 (6)
H180.41510.84700.67840.069*
C190.45919 (16)0.7647 (3)0.79053 (14)0.0614 (6)
H190.41610.82380.80840.074*
C200.52424 (16)0.6652 (3)0.84200 (13)0.0601 (6)
C210.58698 (15)0.5743 (3)0.81581 (13)0.0592 (6)
H210.63080.50710.85070.071*
C220.58459 (14)0.5833 (3)0.73756 (13)0.0559 (6)
H220.62660.52050.71970.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1128 (6)0.1099 (6)0.0642 (4)0.0274 (5)0.0455 (4)0.0168 (4)
Cl20.1127 (6)0.1427 (8)0.0617 (4)0.0110 (5)0.0395 (4)0.0276 (4)
N10.0442 (11)0.0929 (16)0.0500 (11)0.0058 (11)0.0123 (10)0.0067 (10)
N20.0496 (11)0.0902 (15)0.0470 (11)0.0002 (10)0.0125 (9)0.0015 (10)
N30.0437 (11)0.1038 (17)0.0470 (11)0.0070 (11)0.0112 (9)0.0061 (10)
N40.0528 (11)0.0867 (15)0.0499 (12)0.0078 (10)0.0132 (10)0.0019 (10)
C10.0581 (15)0.104 (2)0.0467 (14)0.0025 (15)0.0082 (12)0.0000 (13)
C20.0530 (15)0.101 (2)0.0594 (16)0.0018 (14)0.0003 (12)0.0038 (14)
C30.0453 (13)0.0847 (19)0.0717 (17)0.0065 (13)0.0062 (13)0.0064 (14)
C40.0501 (13)0.0802 (18)0.0535 (14)0.0011 (12)0.0136 (11)0.0050 (12)
C50.0437 (12)0.0622 (14)0.0499 (13)0.0034 (11)0.0086 (11)0.0051 (11)
C60.0444 (12)0.0614 (14)0.0502 (13)0.0000 (11)0.0146 (10)0.0030 (11)
C70.0509 (14)0.0699 (16)0.0649 (15)0.0099 (12)0.0126 (12)0.0014 (12)
C80.0565 (14)0.0664 (16)0.0782 (17)0.0024 (12)0.0301 (13)0.0124 (13)
C90.0627 (15)0.0628 (16)0.0556 (14)0.0137 (12)0.0231 (12)0.0072 (11)
C100.0489 (13)0.0655 (16)0.0547 (14)0.0020 (11)0.0107 (11)0.0056 (11)
C110.0438 (12)0.0596 (14)0.0575 (14)0.0017 (11)0.0162 (11)0.0015 (11)
C120.0645 (17)0.111 (2)0.0505 (15)0.0178 (15)0.0148 (13)0.0093 (14)
C130.0578 (16)0.119 (2)0.0516 (15)0.0208 (16)0.0031 (13)0.0020 (15)
C140.0464 (14)0.102 (2)0.0685 (17)0.0002 (14)0.0049 (13)0.0065 (15)
C150.0488 (13)0.0883 (18)0.0560 (14)0.0067 (13)0.0097 (11)0.0019 (13)
C160.0478 (13)0.0647 (15)0.0496 (13)0.0051 (11)0.0106 (11)0.0018 (11)
C170.0384 (11)0.0631 (14)0.0489 (13)0.0045 (10)0.0108 (10)0.0009 (10)
C180.0499 (13)0.0631 (15)0.0555 (14)0.0051 (11)0.0094 (11)0.0066 (11)
C190.0562 (14)0.0704 (17)0.0622 (15)0.0023 (12)0.0244 (12)0.0011 (12)
C200.0603 (15)0.0692 (16)0.0526 (14)0.0064 (13)0.0186 (12)0.0107 (12)
C210.0486 (13)0.0677 (16)0.0586 (14)0.0023 (12)0.0104 (11)0.0153 (12)
C220.0420 (12)0.0654 (15)0.0585 (14)0.0008 (11)0.0114 (11)0.0029 (11)
Geometric parameters (Å, º) top
Cl1—C91.744 (2)C8—C91.373 (3)
Cl2—C201.737 (2)C8—H80.9300
N1—C51.372 (3)C9—C101.371 (3)
N1—C61.405 (3)C10—C111.377 (3)
N1—H10.865 (10)C10—H100.9300
N2—C11.338 (3)C11—H110.9300
N2—C51.338 (3)C12—C131.356 (3)
N3—C161.378 (3)C12—H120.9300
N3—C171.393 (3)C13—C141.378 (3)
N3—H30.863 (9)C13—H130.9300
N4—C121.333 (3)C14—C151.359 (3)
N4—C161.333 (3)C14—H140.9300
C1—C21.364 (3)C15—C161.389 (3)
C1—H1A0.9300C15—H150.9300
C2—C31.378 (3)C17—C181.382 (3)
C2—H20.9300C17—C221.396 (3)
C3—C41.362 (3)C18—C191.377 (3)
C3—H3A0.9300C18—H180.9300
C4—C51.400 (3)C19—C201.377 (3)
C4—H40.9300C19—H190.9300
C6—C71.382 (3)C20—C211.373 (3)
C6—C111.383 (3)C21—C221.376 (3)
C7—C81.384 (3)C21—H210.9300
C7—H70.9300C22—H220.9300
C5—N1—C6127.0 (2)C11—C10—H10120.2
C5—N1—H1115.4 (16)C10—C11—C6120.9 (2)
C6—N1—H1116.6 (16)C10—C11—H11119.5
C1—N2—C5116.8 (2)C6—C11—H11119.5
C16—N3—C17127.9 (2)N4—C12—C13124.7 (2)
C16—N3—H3115.4 (15)N4—C12—H12117.6
C17—N3—H3116.0 (15)C13—C12—H12117.6
C12—N4—C16117.2 (2)C12—C13—C14117.4 (2)
N2—C1—C2125.3 (2)C12—C13—H13121.3
N2—C1—H1A117.3C14—C13—H13121.3
C2—C1—H1A117.3C15—C14—C13119.7 (2)
C1—C2—C3116.8 (2)C15—C14—H14120.2
C1—C2—H2121.6C13—C14—H14120.2
C3—C2—H2121.6C14—C15—C16119.0 (2)
C4—C3—C2120.4 (2)C14—C15—H15120.5
C4—C3—H3A119.8C16—C15—H15120.5
C2—C3—H3A119.8N4—C16—N3114.45 (19)
C3—C4—C5118.7 (2)N4—C16—C15121.9 (2)
C3—C4—H4120.7N3—C16—C15123.6 (2)
C5—C4—H4120.7C18—C17—N3124.0 (2)
N2—C5—N1114.34 (19)C18—C17—C22118.3 (2)
N2—C5—C4122.0 (2)N3—C17—C22117.6 (2)
N1—C5—C4123.7 (2)C19—C18—C17120.7 (2)
C7—C6—C11118.9 (2)C19—C18—H18119.6
C7—C6—N1122.6 (2)C17—C18—H18119.6
C11—C6—N1118.5 (2)C18—C19—C20119.9 (2)
C6—C7—C8120.3 (2)C18—C19—H19120.0
C6—C7—H7119.9C20—C19—H19120.0
C8—C7—H7119.9C21—C20—C19120.5 (2)
C9—C8—C7119.8 (2)C21—C20—Cl2120.07 (18)
C9—C8—H8120.1C19—C20—Cl2119.5 (2)
C7—C8—H8120.1C20—C21—C22119.5 (2)
C10—C9—C8120.6 (2)C20—C21—H21120.2
C10—C9—Cl1119.87 (19)C22—C21—H21120.2
C8—C9—Cl1119.55 (19)C21—C22—C17121.0 (2)
C9—C10—C11119.5 (2)C21—C22—H22119.5
C9—C10—H10120.2C17—C22—H22119.5
C5—N2—C1—C20.6 (4)C16—N4—C12—C130.4 (4)
N2—C1—C2—C30.5 (4)N4—C12—C13—C141.9 (5)
C1—C2—C3—C40.3 (4)C12—C13—C14—C151.8 (4)
C2—C3—C4—C50.1 (4)C13—C14—C15—C160.5 (4)
C1—N2—C5—N1178.4 (2)C12—N4—C16—N3179.4 (2)
C1—N2—C5—C40.3 (3)C12—N4—C16—C152.8 (4)
C6—N1—C5—N2177.0 (2)C17—N3—C16—N4160.2 (2)
C6—N1—C5—C40.9 (4)C17—N3—C16—C1522.0 (4)
C3—C4—C5—N20.1 (4)C14—C15—C16—N42.9 (4)
C3—C4—C5—N1177.9 (2)C14—C15—C16—N3179.5 (2)
C5—N1—C6—C751.1 (4)C16—N3—C17—C1826.8 (4)
C5—N1—C6—C11131.9 (3)C16—N3—C17—C22155.4 (2)
C11—C6—C7—C81.9 (3)N3—C17—C18—C19178.8 (2)
N1—C6—C7—C8178.9 (2)C22—C17—C18—C191.1 (3)
C6—C7—C8—C92.1 (4)C17—C18—C19—C202.0 (4)
C7—C8—C9—C100.8 (4)C18—C19—C20—C211.5 (4)
C7—C8—C9—Cl1179.35 (19)C18—C19—C20—Cl2178.90 (18)
C8—C9—C10—C110.7 (3)C19—C20—C21—C220.1 (3)
Cl1—C9—C10—C11179.13 (17)Cl2—C20—C21—C22179.70 (18)
C9—C10—C11—C60.9 (3)C20—C21—C22—C170.8 (3)
C7—C6—C11—C100.4 (3)C18—C17—C22—C210.4 (3)
N1—C6—C11—C10177.5 (2)N3—C17—C22—C21177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N40.87 (1)2.16 (1)3.018 (3)170 (2)
N3—H3···N20.86 (1)2.22 (1)3.071 (3)171 (2)

Experimental details

Crystal data
Chemical formulaC11H9ClN2
Mr204.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.5096 (4), 7.5519 (2), 17.6846 (4)
β (°) 106.284 (2)
V3)1988.25 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.42 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.870, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18472, 4565, 2369
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.00
No. of reflections4565
No. of parameters261
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N40.87 (1)2.16 (1)3.018 (3)170 (2)
N3—H3···N20.86 (1)2.22 (1)3.071 (3)171 (2)
 

Acknowledgements

We thank the University of Malaya for supporting this study (grant No. PS205/2008 A).

References

First citationAbdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttigen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds