metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cadmium(II) 2,2′-(azino­di­methyl­­idyne)di­benzene­sulfonate dihydrate

aCollege of Bioengineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 19 November 2008; accepted 20 November 2008; online 26 November 2008)

In the title compound, [Cd(H2O)6](C14H10O6N2S2)·2H2O, the complete cation and anion are each generated by crystallographic inversion symmetry. In the crystal structure, the components form a three-dimensional network by way of O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For background to the properties and potential applications of organic–inorganic hybrid materials, see: Hagrman et al. (1998[Hagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater. 10, 2091-2096.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(H2O)6](C14H10O6N2S2)·2H2O

  • Mr = 622.89

  • Triclinic, [P \overline 1]

  • a = 7.8329 (11) Å

  • b = 7.9824 (12) Å

  • c = 10.1010 (15) Å

  • α = 92.723 (1)°

  • β = 102.076 (2)°

  • γ = 105.924 (2)°

  • V = 590.19 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 298 (2) K

  • 0.45 × 0.40 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.621, Tmax = 0.735

  • 3081 measured reflections

  • 2041 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.06

  • 2041 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O5 2.2555 (18)
Cd1—O4 2.2589 (17)
Cd1—O6 2.2947 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.85 1.94 2.783 (3) 171
O4—H4B⋯O1ii 0.85 2.03 2.872 (2) 174
O5—H5A⋯O1iii 0.85 1.99 2.831 (3) 173
O5—H5B⋯O7iv 0.85 2.00 2.843 (3) 173
O6—H6A⋯O7 0.85 2.08 2.881 (3) 157
O6—H6B⋯N1v 0.85 2.15 2.993 (3) 169
O7—H7A⋯O3vi 0.85 1.85 2.692 (3) 172
O7—H7B⋯O2iii 0.85 2.21 3.002 (3) 156
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z; (vi) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of organic/inorganic hybrid materials have attracted intense attention in recent years owing to their potential practical applications, such as antitumor, antidiabetic, antitubercular activities, magnetism and catalysis [Ranford, et al., 1998; Hagrman, et al., 1998]. As part of our studies in this area, we now report the synthesis and crystal structure of the title compound, (I).

The Cd(II) centre is six-coordinate with six O donors of H2O, and adopts distorted octahedral coordination (Table 1, Fig. 1). In the crystal, the molecules form a three-dimensional network by way of O—H···O and O—H···N hydrogen bonds (Table 2).

Related literature top

For background to the properties and potential applications of organic–inorganic hybrid materials, see: Hagrman et al. (1998); Ranford et al. (1998).

Experimental top

A solution of 1.0 mmol 2-formyl-benzenesulfonic acid-hydrazine and 1.0 mmol NaOH in 5 ml 95% ethanol was added to a solution of 0.5 mmol Cd(CH3COO)2.4H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Refinement top

H atom treatment??

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Symmetry codes: (i) 1–x, 1–y, 1–z; (ii) 1–x, 1–y, –z.
Hexaaquacadmium(II) 2,2'-(azinodimethylidyne)dibenzenesulfonate dihydrate top
Crystal data top
[Cd(H2O)6](C14H10O6N2S2)·2H2OZ = 1
Mr = 622.89F(000) = 316
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8329 (11) ÅCell parameters from 2719 reflections
b = 7.9824 (12) Åθ = 2.7–28.3°
c = 10.1010 (15) ŵ = 1.17 mm1
α = 92.723 (1)°T = 298 K
β = 102.076 (2)°Block, colourless
γ = 105.924 (2)°0.45 × 0.40 × 0.28 mm
V = 590.19 (15) Å3
Data collection top
Bruker SMART CCD
diffractometer
2041 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.621, Tmax = 0.735k = 59
3081 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.2007P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2041 reflectionsΔρmax = 0.33 e Å3
152 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.067 (3)
Crystal data top
[Cd(H2O)6](C14H10O6N2S2)·2H2Oγ = 105.924 (2)°
Mr = 622.89V = 590.19 (15) Å3
Triclinic, P1Z = 1
a = 7.8329 (11) ÅMo Kα radiation
b = 7.9824 (12) ŵ = 1.17 mm1
c = 10.1010 (15) ÅT = 298 K
α = 92.723 (1)°0.45 × 0.40 × 0.28 mm
β = 102.076 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1929 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.735Rint = 0.018
3081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2041 reflectionsΔρmin = 0.42 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02922 (13)
N10.5732 (3)0.5473 (3)0.0282 (2)0.0336 (5)
O11.0298 (2)0.6986 (2)0.35433 (17)0.0384 (4)
O21.1817 (3)1.0036 (3)0.35043 (19)0.0465 (5)
O30.8508 (3)0.8917 (3)0.2790 (2)0.0477 (5)
O40.2044 (2)0.3385 (2)0.45818 (18)0.0406 (4)
H4A0.18470.23420.42290.049*
H4B0.13780.33620.51500.049*
O50.6085 (3)0.3128 (3)0.6297 (2)0.0471 (5)
H5A0.72010.31950.63580.057*
H5B0.54900.20600.62830.057*
O60.5347 (3)0.3561 (3)0.30977 (19)0.0448 (5)
H6A0.52930.24850.31230.054*
H6B0.49080.37300.22890.054*
O70.6167 (3)0.0337 (3)0.3703 (2)0.0468 (5)
H7A0.69080.00430.33580.056*
H7B0.65940.04660.45600.056*
S11.02370 (7)0.85670 (8)0.28844 (6)0.02847 (16)
C10.7223 (3)0.5998 (3)0.0615 (2)0.0303 (5)
H10.72340.58060.15170.036*
C20.8948 (3)0.6913 (3)0.0237 (2)0.0265 (5)
C31.0408 (3)0.8087 (3)0.1183 (2)0.0258 (5)
C41.2027 (3)0.8863 (3)0.0822 (3)0.0348 (6)
H41.29840.96500.14510.042*
C51.2224 (4)0.8469 (4)0.0476 (3)0.0423 (6)
H51.33160.89890.07170.051*
C61.0809 (3)0.7311 (4)0.1414 (3)0.0386 (6)
H61.09480.70440.22840.046*
C70.9177 (3)0.6542 (3)0.1061 (2)0.0337 (5)
H70.82230.57680.17010.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03192 (17)0.02725 (17)0.02920 (17)0.01001 (10)0.00609 (10)0.00611 (10)
N10.0251 (10)0.0408 (12)0.0293 (11)0.0001 (9)0.0060 (8)0.0066 (9)
O10.0449 (10)0.0429 (10)0.0318 (9)0.0163 (8)0.0123 (8)0.0108 (8)
O20.0477 (11)0.0433 (11)0.0375 (10)0.0004 (9)0.0074 (8)0.0093 (9)
O30.0429 (10)0.0629 (13)0.0486 (12)0.0291 (10)0.0168 (9)0.0054 (10)
O40.0398 (10)0.0394 (10)0.0389 (10)0.0022 (8)0.0151 (8)0.0000 (8)
O50.0416 (10)0.0394 (11)0.0614 (13)0.0147 (9)0.0069 (9)0.0211 (9)
O60.0639 (12)0.0415 (11)0.0329 (10)0.0200 (10)0.0132 (9)0.0038 (8)
O70.0447 (11)0.0518 (12)0.0501 (12)0.0243 (9)0.0123 (9)0.0007 (9)
S10.0288 (3)0.0306 (3)0.0257 (3)0.0085 (2)0.0063 (2)0.0008 (2)
C10.0290 (12)0.0316 (13)0.0265 (12)0.0036 (10)0.0048 (10)0.0033 (10)
C20.0251 (11)0.0282 (12)0.0260 (12)0.0080 (9)0.0044 (9)0.0069 (9)
C30.0253 (11)0.0268 (12)0.0258 (12)0.0086 (9)0.0054 (9)0.0055 (9)
C40.0259 (12)0.0389 (14)0.0329 (13)0.0008 (10)0.0040 (10)0.0036 (11)
C50.0325 (13)0.0565 (17)0.0374 (15)0.0052 (12)0.0158 (11)0.0127 (13)
C60.0401 (14)0.0504 (16)0.0287 (13)0.0143 (12)0.0131 (11)0.0086 (12)
C70.0335 (13)0.0382 (14)0.0265 (12)0.0087 (11)0.0029 (10)0.0021 (10)
Geometric parameters (Å, º) top
Cd1—O5i2.2555 (18)O6—H6B0.8500
Cd1—O52.2555 (18)O7—H7A0.8499
Cd1—O4i2.2589 (17)O7—H7B0.8500
Cd1—O42.2589 (17)S1—C31.783 (2)
Cd1—O6i2.2947 (18)C1—C21.485 (3)
Cd1—O62.2947 (18)C1—H10.9300
N1—C11.270 (3)C2—C71.390 (3)
N1—N1ii1.431 (4)C2—C31.403 (3)
O1—S11.4621 (19)C3—C41.382 (3)
O2—S11.4523 (19)C4—C51.384 (4)
O3—S11.4414 (18)C4—H40.9300
O4—H4A0.8500C5—C61.377 (4)
O4—H4B0.8500C5—H50.9300
O5—H5A0.8500C6—C71.385 (4)
O5—H5B0.8500C6—H60.9300
O6—H6A0.8499C7—H70.9300
O5i—Cd1—O5180.0O3—S1—O1111.68 (12)
O5i—Cd1—O4i95.45 (7)O2—S1—O1111.24 (12)
O5—Cd1—O4i84.55 (7)O3—S1—C3106.73 (11)
O5i—Cd1—O484.55 (7)O2—S1—C3106.56 (11)
O5—Cd1—O495.45 (7)O1—S1—C3105.47 (10)
O4i—Cd1—O4180.0N1—C1—C2120.7 (2)
O5i—Cd1—O6i89.86 (7)N1—C1—H1119.7
O5—Cd1—O6i90.14 (7)C2—C1—H1119.7
O4i—Cd1—O6i90.19 (7)C7—C2—C3118.4 (2)
O4—Cd1—O6i89.81 (7)C7—C2—C1119.8 (2)
O5i—Cd1—O690.14 (7)C3—C2—C1121.7 (2)
O5—Cd1—O689.86 (7)C4—C3—C2120.5 (2)
O4i—Cd1—O689.81 (7)C4—C3—S1118.63 (17)
O4—Cd1—O690.19 (7)C2—C3—S1120.88 (17)
O6i—Cd1—O6180.0C3—C4—C5120.0 (2)
C1—N1—N1ii111.5 (2)C3—C4—H4120.0
Cd1—O4—H4A113.7C5—C4—H4120.0
Cd1—O4—H4B123.5C6—C5—C4120.3 (2)
H4A—O4—H4B108.3C6—C5—H5119.9
Cd1—O5—H5A116.0C4—C5—H5119.9
Cd1—O5—H5B123.2C5—C6—C7120.0 (2)
H5A—O5—H5B108.7C5—C6—H6120.0
Cd1—O6—H6A116.9C7—C6—H6120.0
Cd1—O6—H6B123.6C6—C7—C2120.8 (2)
H6A—O6—H6B109.5C6—C7—H7119.6
H7A—O7—H7B105.6C2—C7—H7119.6
O3—S1—O2114.51 (12)
N1ii—N1—C1—C2176.2 (2)O3—S1—C3—C247.1 (2)
N1—C1—C2—C729.2 (4)O2—S1—C3—C2169.90 (19)
N1—C1—C2—C3154.3 (2)O1—S1—C3—C271.8 (2)
C7—C2—C3—C40.5 (3)C2—C3—C4—C50.7 (4)
C1—C2—C3—C4177.1 (2)S1—C3—C4—C5177.7 (2)
C7—C2—C3—S1177.85 (18)C3—C4—C5—C60.3 (4)
C1—C2—C3—S11.2 (3)C4—C5—C6—C70.3 (4)
O3—S1—C3—C4134.5 (2)C5—C6—C7—C20.5 (4)
O2—S1—C3—C411.7 (2)C3—C2—C7—C60.1 (4)
O1—S1—C3—C4106.6 (2)C1—C2—C7—C6176.6 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2iii0.851.942.783 (3)171
O4—H4B···O1i0.852.032.872 (2)174
O5—H5A···O1iv0.851.992.831 (3)173
O5—H5B···O7v0.852.002.843 (3)173
O6—H6A···O70.852.082.881 (3)157
O6—H6B···N1ii0.852.152.993 (3)169
O7—H7A···O3vi0.851.852.692 (3)172
O7—H7B···O2iv0.852.213.002 (3)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd(H2O)6](C14H10O6N2S2)·2H2O
Mr622.89
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8329 (11), 7.9824 (12), 10.1010 (15)
α, β, γ (°)92.723 (1), 102.076 (2), 105.924 (2)
V3)590.19 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.45 × 0.40 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.621, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
3081, 2041, 1929
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.06
No. of reflections2041
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O52.2555 (18)Cd1—O62.2947 (18)
Cd1—O42.2589 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.851.942.783 (3)171
O4—H4B···O1ii0.852.032.872 (2)174
O5—H5A···O1iii0.851.992.831 (3)173
O5—H5B···O7iv0.852.002.843 (3)173
O6—H6A···O70.852.082.881 (3)157
O6—H6B···N1v0.852.152.993 (3)169
O7—H7A···O3vi0.851.852.692 (3)172
O7—H7B···O2iii0.852.213.002 (3)156
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z; (vi) x, y1, z.
 

Acknowledgements

The authors thank the Science and Technology Foundation of Weifang (2008–19) for a research grant.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater. 10, 2091–2096.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds