organic compounds
2,6-Dimethylanilinium chloride monohydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: wajda_sta@yahoo.fr
In the title hydrated molecular salt, C8H12N+·Cl−·H2O, the component species interact by way of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, resulting in a three-dimensional network.
Related literature
For related structures, see: Abid et al. (2007); Mrad et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808039159/hb2860sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039159/hb2860Isup2.hkl
2,6-xylidinie and HCl were mixed in water in a 1: 1 molar ratio. The obtained solution was slowly evapored at room temperature to yield colourless blocks of (I).
The H atoms were located in a difference map and their positions and Uiso values were freely refined.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. View of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level (arbitrary spheres for the H atoms). | |
Fig. 2. A perspective view of the packing in (I). |
C8H12N+·Cl−·H2O | F(000) = 376 |
Mr = 175.65 | Dx = 1.228 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.676 (3) Å | θ = 9.2–10.8° |
b = 14.144 (3) Å | µ = 0.35 mm−1 |
c = 7.913 (6) Å | T = 293 K |
β = 101.88 (5)° | Block, colourless |
V = 950.2 (8) Å3 | 0.20 × 0.13 × 0.10 mm |
Z = 4 |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.033 |
Radiation source: Enraf Nonius FR590 | θmax = 28.0°, θmin = 2.8° |
Graphite monochromator | h = −5→11 |
Non–profiled ω scans | k = −18→0 |
3722 measured reflections | l = −10→10 |
2244 independent reflections | 2 standard reflections every 120 min |
1827 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters not refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1063P] where P = (Fo2 + 2Fc2)/3 |
2244 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C8H12N+·Cl−·H2O | V = 950.2 (8) Å3 |
Mr = 175.65 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.676 (3) Å | µ = 0.35 mm−1 |
b = 14.144 (3) Å | T = 293 K |
c = 7.913 (6) Å | 0.20 × 0.13 × 0.10 mm |
β = 101.88 (5)° |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.033 |
3722 measured reflections | 2 standard reflections every 120 min |
2244 independent reflections | intensity decay: 5% |
1827 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters not refined |
S = 1.04 | Δρmax = 0.17 e Å−3 |
2244 reflections | Δρmin = −0.24 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H8 | 0.3326 (19) | 0.0879 (11) | 0.050 (2) | 0.048 (4)* | |
H7 | 0.3721 (19) | 0.1013 (11) | 0.233 (2) | 0.045 (4)* | |
H5 | −0.159 (2) | 0.2065 (13) | 0.033 (2) | 0.058 (4)* | |
H6 | 0.3494 (19) | 0.0085 (13) | 0.161 (2) | 0.053 (4)* | |
H3 | −0.121 (2) | −0.0291 (12) | 0.318 (2) | 0.055 (4)* | |
H13 | 0.171 (2) | 0.2037 (14) | −0.109 (2) | 0.066 (5)* | |
H11 | 0.265 (2) | −0.0493 (14) | 0.427 (3) | 0.070 (6)* | |
H17 | 0.056 (2) | 0.2698 (15) | −0.066 (2) | 0.073 (5)* | |
H2 | 0.488 (3) | 0.2297 (19) | 0.405 (3) | 0.083 (7)* | |
H4 | −0.278 (2) | 0.0943 (13) | 0.191 (2) | 0.067 (5)* | |
H1 | 0.472 (3) | 0.1562 (17) | 0.518 (3) | 0.090 (7)* | |
H10 | 0.215 (2) | −0.1099 (13) | 0.268 (2) | 0.062 (5)* | |
H9 | 0.124 (2) | −0.1045 (14) | 0.406 (3) | 0.071 (6)* | |
H12 | 0.215 (3) | 0.2560 (15) | 0.065 (3) | 0.087 (7)* | |
N1 | 0.31170 (12) | 0.06739 (8) | 0.14878 (14) | 0.0353 (2) | |
C7 | 0.1308 (2) | 0.22609 (11) | −0.0155 (2) | 0.0510 (3) | |
C8 | 0.1800 (2) | −0.07172 (12) | 0.3454 (2) | 0.0512 (3) | |
C1 | 0.14475 (13) | 0.07516 (8) | 0.15925 (14) | 0.0322 (2) | |
C6 | 0.05793 (14) | 0.15126 (9) | 0.07822 (14) | 0.0359 (3) | |
C5 | −0.09996 (16) | 0.15637 (10) | 0.08975 (17) | 0.0435 (3) | |
C2 | 0.08245 (14) | 0.00745 (9) | 0.25368 (15) | 0.0367 (3) | |
C3 | −0.07586 (16) | 0.01607 (10) | 0.26089 (17) | 0.0445 (3) | |
C4 | −0.16594 (15) | 0.08936 (11) | 0.18003 (18) | 0.0466 (3) | |
O1 | 0.48995 (14) | 0.16863 (9) | 0.41224 (15) | 0.0580 (3) | |
Cl1 | 0.45854 (4) | 0.11499 (2) | 0.81025 (4) | 0.04716 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0319 (5) | 0.0398 (5) | 0.0364 (5) | 0.0052 (4) | 0.0125 (4) | 0.0025 (4) |
C7 | 0.0553 (9) | 0.0467 (7) | 0.0546 (8) | 0.0130 (7) | 0.0200 (7) | 0.0119 (6) |
C8 | 0.0580 (9) | 0.0523 (8) | 0.0493 (8) | 0.0100 (7) | 0.0253 (7) | 0.0123 (7) |
C1 | 0.0282 (5) | 0.0398 (6) | 0.0296 (5) | 0.0024 (4) | 0.0083 (4) | −0.0058 (4) |
C6 | 0.0370 (6) | 0.0389 (6) | 0.0318 (5) | 0.0050 (5) | 0.0074 (4) | −0.0049 (4) |
C5 | 0.0356 (6) | 0.0504 (7) | 0.0428 (6) | 0.0102 (6) | 0.0039 (5) | −0.0091 (6) |
C2 | 0.0378 (6) | 0.0416 (6) | 0.0328 (5) | 0.0007 (5) | 0.0121 (4) | −0.0047 (5) |
C3 | 0.0402 (7) | 0.0524 (8) | 0.0452 (6) | −0.0068 (6) | 0.0186 (5) | −0.0077 (6) |
C4 | 0.0298 (6) | 0.0602 (8) | 0.0508 (7) | −0.0003 (5) | 0.0107 (5) | −0.0145 (6) |
O1 | 0.0654 (7) | 0.0543 (7) | 0.0509 (6) | 0.0072 (5) | 0.0039 (5) | −0.0041 (5) |
Cl1 | 0.04621 (19) | 0.04719 (19) | 0.0534 (2) | 0.01013 (14) | 0.02267 (14) | 0.00643 (13) |
N1—C1 | 1.4718 (16) | C1—C2 | 1.3907 (17) |
N1—H8 | 0.883 (18) | C1—C6 | 1.3921 (17) |
N1—H7 | 0.896 (17) | C6—C5 | 1.3934 (18) |
N1—H6 | 0.893 (18) | C5—C4 | 1.380 (2) |
C7—C6 | 1.504 (2) | C5—H5 | 0.935 (18) |
C7—H13 | 0.93 (2) | C2—C3 | 1.3917 (18) |
C7—H17 | 0.92 (2) | C3—C4 | 1.374 (2) |
C7—H12 | 0.96 (2) | C3—H3 | 0.918 (18) |
C8—C2 | 1.498 (2) | C4—H4 | 1.00 (2) |
C8—H11 | 0.93 (2) | O1—H2 | 0.87 (3) |
C8—H10 | 0.92 (2) | O1—H1 | 0.90 (3) |
C8—H9 | 0.88 (2) | ||
C1—N1—H8 | 114.1 (10) | C2—C1—N1 | 118.34 (11) |
C1—N1—H7 | 110.5 (10) | C6—C1—N1 | 118.50 (11) |
H8—N1—H7 | 106.5 (15) | C1—C6—C5 | 117.13 (12) |
C1—N1—H6 | 114.0 (11) | C1—C6—C7 | 121.91 (11) |
H8—N1—H6 | 105.3 (15) | C5—C6—C7 | 120.95 (12) |
H7—N1—H6 | 105.9 (14) | C4—C5—C6 | 121.09 (13) |
C6—C7—H13 | 114.5 (12) | C4—C5—H5 | 121.5 (11) |
C6—C7—H17 | 110.9 (13) | C6—C5—H5 | 117.4 (11) |
H13—C7—H17 | 103.3 (16) | C1—C2—C3 | 117.24 (12) |
C6—C7—H12 | 108.9 (13) | C1—C2—C8 | 122.14 (12) |
H13—C7—H12 | 108.2 (18) | C3—C2—C8 | 120.62 (12) |
H17—C7—H12 | 111.0 (18) | C4—C3—C2 | 121.22 (13) |
C2—C8—H11 | 111.7 (12) | C4—C3—H3 | 119.6 (11) |
C2—C8—H10 | 110.5 (11) | C2—C3—H3 | 119.2 (11) |
H11—C8—H10 | 109.9 (17) | C3—C4—C5 | 120.15 (12) |
C2—C8—H9 | 109.7 (13) | C3—C4—H4 | 118.9 (11) |
H11—C8—H9 | 104.3 (18) | C5—C4—H4 | 120.9 (11) |
H10—C8—H9 | 110.5 (17) | H2—O1—H1 | 105 (2) |
C2—C1—C6 | 123.14 (11) | ||
C2—C1—C6—C5 | −2.12 (17) | N1—C1—C2—C3 | −179.68 (10) |
N1—C1—C6—C5 | 179.69 (10) | C6—C1—C2—C8 | −177.60 (12) |
C2—C1—C6—C7 | 176.85 (12) | N1—C1—C2—C8 | 0.60 (18) |
N1—C1—C6—C7 | −1.34 (17) | C1—C2—C3—C4 | −0.96 (18) |
C1—C6—C5—C4 | 0.94 (17) | C8—C2—C3—C4 | 178.78 (14) |
C7—C6—C5—C4 | −178.04 (13) | C2—C3—C4—C5 | −0.1 (2) |
C6—C1—C2—C3 | 2.13 (17) | C6—C5—C4—C3 | 0.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1 | 0.90 (2) | 2.41 (2) | 3.305 (3) | 173 (2) |
O1—H2···Cl1i | 0.87 (3) | 2.32 (3) | 3.163 (3) | 165 (2) |
N1—H6···Cl1ii | 0.893 (18) | 2.392 (18) | 3.235 (3) | 157.5 (15) |
N1—H7···O1 | 0.896 (16) | 1.835 (16) | 2.731 (3) | 177.3 (17) |
N1—H8···Cl1iii | 0.883 (16) | 2.414 (16) | 3.265 (3) | 162.8 (15) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C8H12N+·Cl−·H2O |
Mr | 175.65 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.676 (3), 14.144 (3), 7.913 (6) |
β (°) | 101.88 (5) |
V (Å3) | 950.2 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.20 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3722, 2244, 1827 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.080, 1.04 |
No. of reflections | 2244 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.17, −0.24 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1 | 0.90 (2) | 2.41 (2) | 3.305 (3) | 173 (2) |
O1—H2···Cl1i | 0.87 (3) | 2.32 (3) | 3.163 (3) | 165 (2) |
N1—H6···Cl1ii | 0.893 (18) | 2.392 (18) | 3.235 (3) | 157.5 (15) |
N1—H7···O1 | 0.896 (16) | 1.835 (16) | 2.731 (3) | 177.3 (17) |
N1—H8···Cl1iii | 0.883 (16) | 2.414 (16) | 3.265 (3) | 162.8 (15) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x, y, z−1. |
References
Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Mrad, M. L., Ben Nasr, C. & Rzaigui, M. (2006). Anal. Sci. 22, x227–x228. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing studies of organic-inorganic hybrid networks containing the 2,6-xylidinium cation (Mrad et al., 2006; Abid et al., 2007) we now report the synthesis and structure of the title compound, (I).
As shown in Fig. 1, the asymmetric unit of (I) contains a 2,6-xylidinium cation, a chloride anion and a water molecule. A perspective view of the structure along the a axis is given in Fig. 2. It shows that two 2,6-xylidinium cations are interconnected through two chloride anions into dimers via two N—H···Cl bonds, characterized by N···Cl separations of 3.264 (3) and 3.235 (3) Å) and forming an 8-membered ring with graph-set R24(8) (Bernstein et al., 1995).
The title compound is a crystalline hydrate including one water of crystallization, which interconnect these dimers to each other to form layers parallel to the (b, c) plane, through N—H···O and O—H···Cl hydrogen bonds (Table 1).
Hydrogen bonds, electrostatic and van der Waals interactions participate to the cohesion of the three-dimensional network and add stability to this compound (Fig. 2). An examination of the organic group moiety geometrical features shows that the C—C and C—N bond lengths and the C—C—C and C—C—N angles are in the range usually found for this molecule (Abid et al., 2007).