organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­methyl­anilinium chloride monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 20 November 2008; accepted 21 November 2008; online 29 November 2008)

In the title hydrated mol­ecular salt, C8H12N+·Cl·H2O, the component species inter­act by way of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, resulting in a three-dimensional network.

Related literature

For related structures, see: Abid et al. (2007[Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.]); Mrad et al. (2006[Mrad, M. L., Ben Nasr, C. & Rzaigui, M. (2006). Anal. Sci. 22, x227-x228.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·Cl·H2O

  • Mr = 175.65

  • Monoclinic, P 21 /c

  • a = 8.676 (3) Å

  • b = 14.144 (3) Å

  • c = 7.913 (6) Å

  • β = 101.88 (5)°

  • V = 950.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 (2) K

  • 0.20 × 0.13 × 0.10 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 3722 measured reflections

  • 2244 independent reflections

  • 1827 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.04

  • 2244 reflections

  • 156 parameters

  • H-atom parameters not refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.90 (2) 2.41 (2) 3.305 (3) 173 (2)
O1—H2⋯Cl1i 0.87 (3) 2.32 (3) 3.163 (3) 165 (2)
N1—H6⋯Cl1ii 0.893 (18) 2.392 (18) 3.235 (3) 157.5 (15)
N1—H7⋯O1 0.896 (16) 1.835 (16) 2.731 (3) 177.3 (17)
N1—H8⋯Cl1iii 0.883 (16) 2.414 (16) 3.265 (3) 162.8 (15)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x, y, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing studies of organic-inorganic hybrid networks containing the 2,6-xylidinium cation (Mrad et al., 2006; Abid et al., 2007) we now report the synthesis and structure of the title compound, (I).

As shown in Fig. 1, the asymmetric unit of (I) contains a 2,6-xylidinium cation, a chloride anion and a water molecule. A perspective view of the structure along the a axis is given in Fig. 2. It shows that two 2,6-xylidinium cations are interconnected through two chloride anions into dimers via two N—H···Cl bonds, characterized by N···Cl separations of 3.264 (3) and 3.235 (3) Å) and forming an 8-membered ring with graph-set R24(8) (Bernstein et al., 1995).

The title compound is a crystalline hydrate including one water of crystallization, which interconnect these dimers to each other to form layers parallel to the (b, c) plane, through N—H···O and O—H···Cl hydrogen bonds (Table 1).

Hydrogen bonds, electrostatic and van der Waals interactions participate to the cohesion of the three-dimensional network and add stability to this compound (Fig. 2). An examination of the organic group moiety geometrical features shows that the C—C and C—N bond lengths and the C—C—C and C—C—N angles are in the range usually found for this molecule (Abid et al., 2007).

Related literature top

For related structures, see: Abid et al. (2007); Mrad et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2,6-xylidinie and HCl were mixed in water in a 1: 1 molar ratio. The obtained solution was slowly evapored at room temperature to yield colourless blocks of (I).

Refinement top

The H atoms were located in a difference map and their positions and Uiso values were freely refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A perspective view of the packing in (I).
2,6-Dimethylanilinium chloride monohydrate top
Crystal data top
C8H12N+·Cl·H2OF(000) = 376
Mr = 175.65Dx = 1.228 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.676 (3) Åθ = 9.2–10.8°
b = 14.144 (3) ŵ = 0.35 mm1
c = 7.913 (6) ÅT = 293 K
β = 101.88 (5)°Block, colourless
V = 950.2 (8) Å30.20 × 0.13 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.033
Radiation source: Enraf Nonius FR590θmax = 28.0°, θmin = 2.8°
Graphite monochromatorh = 511
Non–profiled ω scansk = 180
3722 measured reflectionsl = 1010
2244 independent reflections2 standard reflections every 120 min
1827 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters not refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1063P]
where P = (Fo2 + 2Fc2)/3
2244 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H12N+·Cl·H2OV = 950.2 (8) Å3
Mr = 175.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.676 (3) ŵ = 0.35 mm1
b = 14.144 (3) ÅT = 293 K
c = 7.913 (6) Å0.20 × 0.13 × 0.10 mm
β = 101.88 (5)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.033
3722 measured reflections2 standard reflections every 120 min
2244 independent reflections intensity decay: 5%
1827 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters not refined
S = 1.04Δρmax = 0.17 e Å3
2244 reflectionsΔρmin = 0.24 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H80.3326 (19)0.0879 (11)0.050 (2)0.048 (4)*
H70.3721 (19)0.1013 (11)0.233 (2)0.045 (4)*
H50.159 (2)0.2065 (13)0.033 (2)0.058 (4)*
H60.3494 (19)0.0085 (13)0.161 (2)0.053 (4)*
H30.121 (2)0.0291 (12)0.318 (2)0.055 (4)*
H130.171 (2)0.2037 (14)0.109 (2)0.066 (5)*
H110.265 (2)0.0493 (14)0.427 (3)0.070 (6)*
H170.056 (2)0.2698 (15)0.066 (2)0.073 (5)*
H20.488 (3)0.2297 (19)0.405 (3)0.083 (7)*
H40.278 (2)0.0943 (13)0.191 (2)0.067 (5)*
H10.472 (3)0.1562 (17)0.518 (3)0.090 (7)*
H100.215 (2)0.1099 (13)0.268 (2)0.062 (5)*
H90.124 (2)0.1045 (14)0.406 (3)0.071 (6)*
H120.215 (3)0.2560 (15)0.065 (3)0.087 (7)*
N10.31170 (12)0.06739 (8)0.14878 (14)0.0353 (2)
C70.1308 (2)0.22609 (11)0.0155 (2)0.0510 (3)
C80.1800 (2)0.07172 (12)0.3454 (2)0.0512 (3)
C10.14475 (13)0.07516 (8)0.15925 (14)0.0322 (2)
C60.05793 (14)0.15126 (9)0.07822 (14)0.0359 (3)
C50.09996 (16)0.15637 (10)0.08975 (17)0.0435 (3)
C20.08245 (14)0.00745 (9)0.25368 (15)0.0367 (3)
C30.07586 (16)0.01607 (10)0.26089 (17)0.0445 (3)
C40.16594 (15)0.08936 (11)0.18003 (18)0.0466 (3)
O10.48995 (14)0.16863 (9)0.41224 (15)0.0580 (3)
Cl10.45854 (4)0.11499 (2)0.81025 (4)0.04716 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0319 (5)0.0398 (5)0.0364 (5)0.0052 (4)0.0125 (4)0.0025 (4)
C70.0553 (9)0.0467 (7)0.0546 (8)0.0130 (7)0.0200 (7)0.0119 (6)
C80.0580 (9)0.0523 (8)0.0493 (8)0.0100 (7)0.0253 (7)0.0123 (7)
C10.0282 (5)0.0398 (6)0.0296 (5)0.0024 (4)0.0083 (4)0.0058 (4)
C60.0370 (6)0.0389 (6)0.0318 (5)0.0050 (5)0.0074 (4)0.0049 (4)
C50.0356 (6)0.0504 (7)0.0428 (6)0.0102 (6)0.0039 (5)0.0091 (6)
C20.0378 (6)0.0416 (6)0.0328 (5)0.0007 (5)0.0121 (4)0.0047 (5)
C30.0402 (7)0.0524 (8)0.0452 (6)0.0068 (6)0.0186 (5)0.0077 (6)
C40.0298 (6)0.0602 (8)0.0508 (7)0.0003 (5)0.0107 (5)0.0145 (6)
O10.0654 (7)0.0543 (7)0.0509 (6)0.0072 (5)0.0039 (5)0.0041 (5)
Cl10.04621 (19)0.04719 (19)0.0534 (2)0.01013 (14)0.02267 (14)0.00643 (13)
Geometric parameters (Å, º) top
N1—C11.4718 (16)C1—C21.3907 (17)
N1—H80.883 (18)C1—C61.3921 (17)
N1—H70.896 (17)C6—C51.3934 (18)
N1—H60.893 (18)C5—C41.380 (2)
C7—C61.504 (2)C5—H50.935 (18)
C7—H130.93 (2)C2—C31.3917 (18)
C7—H170.92 (2)C3—C41.374 (2)
C7—H120.96 (2)C3—H30.918 (18)
C8—C21.498 (2)C4—H41.00 (2)
C8—H110.93 (2)O1—H20.87 (3)
C8—H100.92 (2)O1—H10.90 (3)
C8—H90.88 (2)
C1—N1—H8114.1 (10)C2—C1—N1118.34 (11)
C1—N1—H7110.5 (10)C6—C1—N1118.50 (11)
H8—N1—H7106.5 (15)C1—C6—C5117.13 (12)
C1—N1—H6114.0 (11)C1—C6—C7121.91 (11)
H8—N1—H6105.3 (15)C5—C6—C7120.95 (12)
H7—N1—H6105.9 (14)C4—C5—C6121.09 (13)
C6—C7—H13114.5 (12)C4—C5—H5121.5 (11)
C6—C7—H17110.9 (13)C6—C5—H5117.4 (11)
H13—C7—H17103.3 (16)C1—C2—C3117.24 (12)
C6—C7—H12108.9 (13)C1—C2—C8122.14 (12)
H13—C7—H12108.2 (18)C3—C2—C8120.62 (12)
H17—C7—H12111.0 (18)C4—C3—C2121.22 (13)
C2—C8—H11111.7 (12)C4—C3—H3119.6 (11)
C2—C8—H10110.5 (11)C2—C3—H3119.2 (11)
H11—C8—H10109.9 (17)C3—C4—C5120.15 (12)
C2—C8—H9109.7 (13)C3—C4—H4118.9 (11)
H11—C8—H9104.3 (18)C5—C4—H4120.9 (11)
H10—C8—H9110.5 (17)H2—O1—H1105 (2)
C2—C1—C6123.14 (11)
C2—C1—C6—C52.12 (17)N1—C1—C2—C3179.68 (10)
N1—C1—C6—C5179.69 (10)C6—C1—C2—C8177.60 (12)
C2—C1—C6—C7176.85 (12)N1—C1—C2—C80.60 (18)
N1—C1—C6—C71.34 (17)C1—C2—C3—C40.96 (18)
C1—C6—C5—C40.94 (17)C8—C2—C3—C4178.78 (14)
C7—C6—C5—C4178.04 (13)C2—C3—C4—C50.1 (2)
C6—C1—C2—C32.13 (17)C6—C5—C4—C30.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.90 (2)2.41 (2)3.305 (3)173 (2)
O1—H2···Cl1i0.87 (3)2.32 (3)3.163 (3)165 (2)
N1—H6···Cl1ii0.893 (18)2.392 (18)3.235 (3)157.5 (15)
N1—H7···O10.896 (16)1.835 (16)2.731 (3)177.3 (17)
N1—H8···Cl1iii0.883 (16)2.414 (16)3.265 (3)162.8 (15)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC8H12N+·Cl·H2O
Mr175.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.676 (3), 14.144 (3), 7.913 (6)
β (°) 101.88 (5)
V3)950.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.20 × 0.13 × 0.10
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3722, 2244, 1827
Rint0.033
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.04
No. of reflections2244
No. of parameters156
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.17, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.90 (2)2.41 (2)3.305 (3)173 (2)
O1—H2···Cl1i0.87 (3)2.32 (3)3.163 (3)165 (2)
N1—H6···Cl1ii0.893 (18)2.392 (18)3.235 (3)157.5 (15)
N1—H7···O10.896 (16)1.835 (16)2.731 (3)177.3 (17)
N1—H8···Cl1iii0.883 (16)2.414 (16)3.265 (3)162.8 (15)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y, z1.
 

References

First citationAbid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMrad, M. L., Ben Nasr, C. & Rzaigui, M. (2006). Anal. Sci. 22, x227–x228.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds