organic compounds
Redetermination of 4-nitrostilbene
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es
In the title compound, C14H11NO2, the benzene rings are inclined to each other with a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the attached benzene ring but is rotated about the C—N bond by 5.84 (12)°. This redetermination results in a with significantly higher precision than the original determination [Hertel & Romer (1931). Z. Kristallogr. 76, 467–469], and the intermolecular interactions have been established. In the molecules are linked by C—H⋯O hydrogen bonds to generate C(5), C(13) and edge-fused R33(28) rings.
Related literature
For a previous study of the title compound, see: Hertel & Romer (1931). For background information on photonic materials, see: Luo et al. (2003); Vidal et al. (2008); Park et al. (2004). For general background, see: Allen et al. (1987); Etter (1990); Nardelli (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536808035459/hg2430sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035459/hg2430Isup2.hkl
The synthesis of (I) was prepared by taking equimolar quantities of benzyltriphenylphosphonium bromide (0.9600 g, 2.20 mmol) and 4-nitrobenzaldehyde (0.3355 g, 2.20 mmol). The mixture was stirred and it was taken to reflux in dry THF in a nitrogen atmosphere at 273 K. 3.3 mmol of potassium tert-butoxide was dissolved in 5 ml of t-butanol and this solution was added drop to drop to the phosphonium mixture obtaining a change in the color of the reaction mixture and completion of the reaction after two hours. Single crystals suitable for X-ray analysis were obtained by evaporation at room temperature using ethyl acetate as solvent.
The
Pbca for p-nitrostilbene was assigned from the All H-atoms were located from difference maps and then treated as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).C14H11NO2 | Dx = 1.373 Mg m−3 |
Mr = 225.24 | Melting point: 421(1) K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 5152 reflections |
a = 10.0839 (3) Å | θ = 2.7–30.7° |
b = 7.6849 (2) Å | µ = 0.09 mm−1 |
c = 28.1176 (8) Å | T = 123 K |
V = 2178.94 (11) Å3 | Cut lathe, light yellow |
Z = 8 | 0.40 × 0.40 × 0.18 mm |
F(000) = 944 |
Oxford Xcalibur-S diffractometer | 3173 independent reflections |
Radiation source: fine-focus sealed tube | 2202 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 30.0°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | h = −14→12 |
Tmin = 0.965, Tmax = 0.985 | k = −10→10 |
13263 measured reflections | l = −37→39 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.491P] where P = (Fo2 + 2Fc2)/3 |
3173 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C14H11NO2 | V = 2178.94 (11) Å3 |
Mr = 225.24 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.0839 (3) Å | µ = 0.09 mm−1 |
b = 7.6849 (2) Å | T = 123 K |
c = 28.1176 (8) Å | 0.40 × 0.40 × 0.18 mm |
Oxford Xcalibur-S diffractometer | 3173 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2202 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.985 | Rint = 0.027 |
13263 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.32 e Å−3 |
3173 reflections | Δρmin = −0.18 e Å−3 |
154 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.69853 (10) | 0.14689 (14) | 1.05469 (3) | 0.0360 (3) | |
O2 | 0.51679 (11) | 0.28695 (16) | 1.04197 (4) | 0.0453 (3) | |
N1 | 0.60967 (11) | 0.19752 (15) | 1.02843 (4) | 0.0267 (3) | |
C1 | 0.61582 (12) | 0.15108 (16) | 0.97771 (4) | 0.0209 (3) | |
C2 | 0.51199 (13) | 0.19912 (17) | 0.94826 (5) | 0.0232 (3) | |
H2 | 0.4364 | 0.2572 | 0.9607 | 0.028* | |
C3 | 0.52059 (13) | 0.16074 (16) | 0.90021 (5) | 0.0239 (3) | |
H3 | 0.4496 | 0.1910 | 0.8796 | 0.029* | |
C4 | 0.63344 (13) | 0.07749 (15) | 0.88166 (4) | 0.0227 (3) | |
C5 | 0.73329 (13) | 0.02692 (17) | 0.91315 (5) | 0.0247 (3) | |
H5 | 0.8083 | −0.0340 | 0.9013 | 0.030* | |
C6 | 0.72573 (13) | 0.06320 (16) | 0.96111 (5) | 0.0244 (3) | |
H6 | 0.7945 | 0.0285 | 0.9822 | 0.029* | |
C7 | 0.65267 (13) | 0.04480 (16) | 0.83078 (5) | 0.0245 (3) | |
H7 | 0.7231 | −0.0309 | 0.8221 | 0.029* | |
C8 | 0.58014 (13) | 0.11181 (16) | 0.79561 (4) | 0.0236 (3) | |
H8 | 0.5084 | 0.1851 | 0.8044 | 0.028* | |
C9 | 0.60077 (12) | 0.08280 (15) | 0.74429 (4) | 0.0218 (3) | |
C10 | 0.50863 (13) | 0.15248 (16) | 0.71267 (4) | 0.0229 (3) | |
H10 | 0.4342 | 0.2142 | 0.7247 | 0.027* | |
C11 | 0.52360 (13) | 0.13330 (17) | 0.66384 (5) | 0.0253 (3) | |
H11 | 0.4599 | 0.1819 | 0.6428 | 0.030* | |
C12 | 0.63151 (13) | 0.04317 (16) | 0.64595 (5) | 0.0261 (3) | |
H12 | 0.6422 | 0.0302 | 0.6126 | 0.031* | |
C13 | 0.72366 (13) | −0.02793 (17) | 0.67678 (5) | 0.0263 (3) | |
H13 | 0.7973 | −0.0904 | 0.6645 | 0.032* | |
C14 | 0.70911 (13) | −0.00852 (16) | 0.72570 (5) | 0.0246 (3) | |
H14 | 0.7730 | −0.0575 | 0.7466 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0325 (6) | 0.0503 (6) | 0.0254 (5) | −0.0005 (5) | −0.0072 (5) | 0.0044 (5) |
O2 | 0.0382 (6) | 0.0687 (8) | 0.0291 (5) | 0.0153 (6) | −0.0009 (5) | −0.0153 (5) |
N1 | 0.0250 (6) | 0.0335 (6) | 0.0217 (5) | −0.0050 (5) | −0.0026 (5) | 0.0008 (5) |
C1 | 0.0213 (6) | 0.0227 (6) | 0.0188 (6) | −0.0036 (5) | −0.0003 (5) | 0.0011 (5) |
C2 | 0.0191 (6) | 0.0269 (6) | 0.0236 (6) | 0.0000 (5) | −0.0005 (5) | −0.0002 (5) |
C3 | 0.0225 (6) | 0.0264 (6) | 0.0226 (6) | −0.0018 (5) | −0.0041 (5) | 0.0024 (5) |
C4 | 0.0263 (6) | 0.0196 (5) | 0.0220 (6) | −0.0040 (5) | 0.0010 (5) | 0.0004 (5) |
C5 | 0.0232 (6) | 0.0242 (6) | 0.0267 (7) | 0.0028 (5) | 0.0023 (5) | 0.0001 (5) |
C6 | 0.0231 (6) | 0.0231 (6) | 0.0271 (7) | 0.0013 (5) | −0.0022 (5) | 0.0039 (5) |
C7 | 0.0244 (6) | 0.0237 (6) | 0.0253 (6) | 0.0008 (5) | 0.0014 (5) | −0.0023 (5) |
C8 | 0.0243 (6) | 0.0223 (6) | 0.0242 (6) | −0.0003 (5) | 0.0012 (5) | −0.0004 (5) |
C9 | 0.0254 (6) | 0.0177 (5) | 0.0222 (6) | −0.0030 (5) | 0.0010 (5) | −0.0002 (5) |
C10 | 0.0222 (6) | 0.0218 (6) | 0.0247 (6) | 0.0007 (5) | 0.0017 (5) | −0.0005 (5) |
C11 | 0.0282 (7) | 0.0238 (6) | 0.0240 (6) | −0.0002 (5) | −0.0028 (5) | 0.0013 (5) |
C12 | 0.0343 (7) | 0.0225 (6) | 0.0215 (6) | −0.0026 (6) | 0.0027 (6) | −0.0023 (5) |
C13 | 0.0257 (7) | 0.0222 (6) | 0.0309 (7) | 0.0017 (5) | 0.0057 (6) | −0.0039 (5) |
C14 | 0.0240 (7) | 0.0213 (6) | 0.0285 (7) | 0.0000 (5) | −0.0038 (5) | 0.0012 (5) |
O1—N1 | 1.2246 (14) | C7—H7 | 0.9500 |
O2—N1 | 1.2225 (15) | C8—C9 | 1.4750 (17) |
N1—C1 | 1.4712 (16) | C8—H8 | 0.9500 |
C1—C6 | 1.3793 (17) | C9—C10 | 1.3931 (17) |
C1—C2 | 1.3851 (18) | C9—C14 | 1.3998 (17) |
C2—C3 | 1.3855 (17) | C10—C11 | 1.3890 (18) |
C2—H2 | 0.9500 | C10—H10 | 0.9500 |
C3—C4 | 1.4058 (18) | C11—C12 | 1.3845 (18) |
C3—H3 | 0.9500 | C11—H11 | 0.9500 |
C4—C5 | 1.3960 (18) | C12—C13 | 1.3833 (19) |
C4—C7 | 1.4653 (17) | C12—H12 | 0.9500 |
C5—C6 | 1.3789 (18) | C13—C14 | 1.3914 (18) |
C5—H5 | 0.9500 | C13—H13 | 0.9500 |
C6—H6 | 0.9500 | C14—H14 | 0.9500 |
C7—C8 | 1.3334 (18) | ||
O2—N1—O1 | 123.46 (11) | C4—C7—H7 | 117.1 |
O2—N1—C1 | 118.07 (11) | C7—C8—C9 | 126.15 (12) |
O1—N1—C1 | 118.46 (12) | C7—C8—H8 | 116.9 |
C6—C1—C2 | 122.37 (12) | C9—C8—H8 | 116.9 |
C6—C1—N1 | 118.74 (11) | C10—C9—C14 | 118.36 (12) |
C2—C1—N1 | 118.88 (11) | C10—C9—C8 | 118.19 (11) |
C1—C2—C3 | 118.62 (12) | C14—C9—C8 | 123.45 (12) |
C1—C2—H2 | 120.7 | C11—C10—C9 | 121.17 (12) |
C3—C2—H2 | 120.7 | C11—C10—H10 | 119.4 |
C2—C3—C4 | 120.62 (12) | C9—C10—H10 | 119.4 |
C2—C3—H3 | 119.7 | C12—C11—C10 | 119.85 (12) |
C4—C3—H3 | 119.7 | C12—C11—H11 | 120.1 |
C5—C4—C3 | 118.37 (11) | C10—C11—H11 | 120.1 |
C5—C4—C7 | 118.43 (12) | C13—C12—C11 | 119.86 (12) |
C3—C4—C7 | 123.18 (11) | C13—C12—H12 | 120.1 |
C6—C5—C4 | 121.61 (12) | C11—C12—H12 | 120.1 |
C6—C5—H5 | 119.2 | C12—C13—C14 | 120.42 (12) |
C4—C5—H5 | 119.2 | C12—C13—H13 | 119.8 |
C5—C6—C1 | 118.32 (12) | C14—C13—H13 | 119.8 |
C5—C6—H6 | 120.8 | C13—C14—C9 | 120.34 (11) |
C1—C6—H6 | 120.8 | C13—C14—H14 | 119.8 |
C8—C7—C4 | 125.82 (12) | C9—C14—H14 | 119.8 |
C8—C7—H7 | 117.1 | ||
O2—N1—C1—C6 | 174.44 (12) | C5—C4—C7—C8 | −167.03 (12) |
O1—N1—C1—C6 | −4.53 (17) | C3—C4—C7—C8 | 11.53 (19) |
O2—N1—C1—C2 | −4.71 (18) | C4—C7—C8—C9 | 178.48 (12) |
O1—N1—C1—C2 | 176.32 (11) | C7—C8—C9—C10 | 174.99 (12) |
C6—C1—C2—C3 | −1.49 (19) | C7—C8—C9—C14 | −6.1 (2) |
N1—C1—C2—C3 | 177.63 (11) | C14—C9—C10—C11 | −0.39 (18) |
C1—C2—C3—C4 | −1.10 (18) | C8—C9—C10—C11 | 178.59 (11) |
C2—C3—C4—C5 | 3.13 (18) | C9—C10—C11—C12 | 0.17 (18) |
C2—C3—C4—C7 | −175.43 (12) | C10—C11—C12—C13 | 0.24 (19) |
C3—C4—C5—C6 | −2.73 (18) | C11—C12—C13—C14 | −0.42 (19) |
C7—C4—C5—C6 | 175.91 (11) | C12—C13—C14—C9 | 0.19 (18) |
C4—C5—C6—C1 | 0.27 (19) | C10—C9—C14—C13 | 0.21 (17) |
C2—C1—C6—C5 | 1.90 (19) | C8—C9—C14—C13 | −178.71 (11) |
N1—C1—C6—C5 | −177.22 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.55 | 3.3762 (17) | 146 |
C12—H12···O1ii | 0.95 | 2.66 | 3.4139 (16) | 137 |
C12—H12···O2iii | 0.95 | 2.74 | 3.4046 (17) | 128 |
C11—H11···O2iii | 0.95 | 2.90 | 3.4820 (17) | 121 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) −x+3/2, −y, z−1/2; (iii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H11NO2 |
Mr | 225.24 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 123 |
a, b, c (Å) | 10.0839 (3), 7.6849 (2), 28.1176 (8) |
V (Å3) | 2178.94 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.40 × 0.40 × 0.18 |
Data collection | |
Diffractometer | Oxford Xcalibur-S diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.965, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13263, 3173, 2202 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.135, 1.09 |
No. of reflections | 3173 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.55 | 3.3762 (17) | 145.9 |
C12—H12···O1ii | 0.95 | 2.66 | 3.4139 (16) | 136.6 |
C12—H12···O2iii | 0.95 | 2.74 | 3.4046 (17) | 127.5 |
C11—H11···O2iii | 0.95 | 2.90 | 3.4820 (17) | 120.5 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) −x+3/2, −y, z−1/2; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, for partial financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hertel, E. & Romer, G. H. (1931). Z. Kristallogr. 76, 467–469. CAS Google Scholar
Luo, J., Haller, M., Li, H., Kim, T.-D. & Jen, A. K.-Y. (2003). Adv. Mater. 15, 1635–1638. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland. Google Scholar
Park, G., Jung, W. S. & Ra, C. S. (2004). Bull. Korean Chem. Soc. 25, 1427–1429. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vidal, X., Fedyanin, A., Molinos-Gomez, A., Rao, S., Martorell, J. & Petrov, D. (2008). Opt. Lett. 33, 699–701. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A great interest in the design of materials with potential applications in photonic technology has been developed in recent years (Luo et al., 2003; Vidal et al., 2008). Significant efforts have been focused on studying of design and the synthesis of organic molecules with potential nonlinear optical response (NLO), improved optical transparency and thermal stability (Park et al., 2004). A specific type of these molecules consists of electron donor and acceptor end groups interacting through a conjugating segment. In a first stage of work in our group, the synthesis of a stilbene molecule with nitro group with electron-withdrawing capacity as a substituent in para position, is considered. In order to obtain detailed structural information on the molecular conformation, its NLO responses, its hydrogen bonded interactions and its supramolecular arrangement, the crystal structure of p-nitrostilbene (I) was undertaken.
Perspective view of the title molecule, showing the atomic numbering scheme, is given in Fig. 1. The benzene rings are twisted out of the ethylene plane, as defined by the torsion angles C3—C4—C7—C8 and C7—C8—C9—C14 therefore the benzene rings are inclined to each other showing a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the benzene ring but it is rotated about the C—N bond with an angle of rotation of 5.84 (12)°. If compared with the C7—C8 bond length to the expected value for a localized double bond [1.317 (13) Å, Allen et al., 1987], the title distance shows some lengthening that is indicative of some π conjugation of the two benzene rings through the central ethene bridge. The torsion angle between the benzene rings [C4—C7═C8—C9 = 178.48 (12)°] indicates a trans geometry between them. The crystal structure of (I) is stabilized by weak C—H···O hydrogen-bonding interactions [Nardelli, 1995, Table 1]. The formation of the framework can be explained in terms of three-one substructures. In the first substructure atom C2 in the molecule at (x, y, z) acts as a hydrogen bond donor to nitro atom O1 in the molecule at (-1/2 + x, 1/2 - y, 2 - z) so generating, by 21 screw axes, C(5) chains which are running along [100] (Fig. 2). In the second substructure, atom C12 in the molecule at (x, y, z) acts as hydrogen bond donor to nitro atom O2 in the molecule at (x, 1/2 - y, -1/2 + z) so generating C(13) chains along [001] (Fig. 3). In the third-one dimensional substructure atom C12 in the molecule at (x, y, z) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (x, 1/2 - y, -1/2 + z) and atom O1 in the molecule at (3/2 - x, -y, -1/2 + z) so generating a chain of edge-fused with graph motif R33(28) rings along [001] (Etter, 1990), [Fig. 4].