organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro-N-(4-pyridinio)benzene­sulfonamidate monohydrate

aSchool of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China, bCollege of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China, and cCollege of Animal Science, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: liangbin_hu@yahoo.cn

(Received 22 October 2008; accepted 30 October 2008; online 8 November 2008)

The title compound, C11H9N3O4S·H2O, contains both an acid and a base centre and displays a zwitterionic structure. There are two independent mol­ecules and two water mol­ecules in the asymmetric unit. The dihedral angles between the benzene ring and the pyridinium ring are 109.7 (1) and 110.7 (1)°. The dihedral angles between the nitro group and the benzene ring are 116.1 (2) and 116.7 (1)°. The crystal structure is stabilized by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the uses of organic pyridinium salts, see: Damiano et al. (2007[Damiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735—2752.]). For zwitterionic forms of N-aryl­benzene­sulfonamides, see: Li et al. (2007[Li, J.-S., Chen, L.-G., Zhang, Y.-Y., Xu, Y.-J., Deng, Y., Zeng, T. & Huang, P.-M. (2007). J. Chem. Res. pp. 350-352.]); Yu & Li (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.]). For reference geometric data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O4S·H2O

  • Mr = 297.29

  • Monoclinic, P 21

  • a = 8.7206 (17) Å

  • b = 11.972 (2) Å

  • c = 12.743 (3) Å

  • β = 107.65 (3)°

  • V = 1267.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 113 (2) K

  • 0.14 × 0.10 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. ]) Tmin = 0.962, Tmax = 0.989

  • 10348 measured reflections

  • 4633 independent reflections

  • 3587 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.03

  • 4633 reflections

  • 385 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1560 Friedel pairs

  • Flack parameter: 0.52 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O9 0.913 (10) 1.868 (12) 2.764 (3) 167 (3)
O9—H9A⋯O1 0.864 (10) 2.122 (11) 2.967 (3) 166 (3)
N1—H1A⋯O10i 0.918 (10) 1.843 (11) 2.757 (3) 174 (4)
O9—H9B⋯N5ii 0.867 (10) 2.043 (11) 2.901 (3) 170 (2)
O9—H9B⋯O6ii 0.867 (10) 2.56 (2) 3.125 (3) 123 (2)
O10—H10A⋯O6iii 0.867 (10) 2.051 (11) 2.914 (3) 174 (4)
O10—H10B⋯N2iv 0.870 (10) 2.042 (12) 2.902 (3) 170 (3)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. ]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic pyridinium salts have been widely used in the construction of supramolecular architectures (Damiano et al., 2007). As part of our ongoing studies of supramolecular chemistry involving the pyridinium rings (Li et al., 2007), the structure of the title compound was determined by X-ray diffraction. There are two independent molecules and two independent water molecules in the unit cell. In the cations of the title compound the short C—N distance [N2—C1 = 1.367 (3) Å and N5—C12 = 1.365 (3) Å] indicate the slight conjugation of the sulfonamide N with the pyridinium ring (Allen et al., 1987).

The dihedral angles between the benzene ring and the pyridinium ring are 109.7 (1)° and 110.7 (1)° respectively. And the dihedral angles between the nitro group and the benzene ring are 116.1 (2)° and 116.7 (1)° respectively. The crystal structure is stabilized by N—H···O hydrogen bonds.

Related literature top

For the uses of organic pyridinium salts, see: Damiano et al. (2007). For zwitterionic forms of N-arylbenzenesulfonamides, see: Li et al. (2007); Yu & Li (2007). For reference geometric data, see: Allen et al. (1987).

Experimental top

A solution of 2-nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) in CH2Cl2 (10 ml) was added dropwise to a suspension of 4-aminopyridine (0.9 g, 10 mmol) in CH2Cl2 (10 ml) at room temperature with stirring. The reaction mixture was stirred overnight. The yellow solid obtained was washed with warm water to obtain the title compound in a yield of 55.7%. A colorless single crystal suitable for X-ray analysis was obtained by slow evaporation of an NaOH (10%) solution at room temperature over a period of a week.

Refinement top

The N-bound H atoms were located in a difference map and their coordinates were refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The Flack test results are ambiguous because of the presence of merohedral twin. The water O-bound H atoms were refined freely, but the O—H distances were restrained to 0.85 (1) Å, and the water HA···HB distance to 1.45 (1) Å.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level (arbitrary spheres for the H atoms).
2-Nitro-N-(4-pyridinio)benzenesulfonamidate monohydrate top
Crystal data top
C11H9N3O4S·H2OF(000) = 616
Mr = 297.29Dx = 1.557 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4439 reflections
a = 8.7206 (17) Åθ = 2.4–27.5°
b = 11.972 (2) ŵ = 0.28 mm1
c = 12.743 (3) ÅT = 113 K
β = 107.65 (3)°Block, colourless
V = 1267.8 (4) Å30.14 × 0.10 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
4633 independent reflections
Radiation source: rotating anode3587 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1111
Tmin = 0.962, Tmax = 0.989k = 1215
10348 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
4633 reflectionsΔρmax = 0.22 e Å3
385 parametersΔρmin = 0.40 e Å3
9 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.52 (6)
Crystal data top
C11H9N3O4S·H2OV = 1267.8 (4) Å3
Mr = 297.29Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.7206 (17) ŵ = 0.28 mm1
b = 11.972 (2) ÅT = 113 K
c = 12.743 (3) Å0.14 × 0.10 × 0.04 mm
β = 107.65 (3)°
Data collection top
Rigaku Saturn
diffractometer
4633 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3587 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.989Rint = 0.033
10348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.40 e Å3
4633 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
385 parametersAbsolute structure parameter: 0.52 (6)
9 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54299 (7)0.49945 (5)0.75574 (5)0.01423 (14)
S21.01577 (7)0.25356 (5)0.35546 (5)0.01307 (14)
O10.36887 (19)0.49815 (17)0.72910 (14)0.0177 (4)
O20.6116 (2)0.59540 (15)0.71745 (16)0.0187 (4)
O30.4219 (3)0.29003 (18)0.87441 (18)0.0318 (5)
O40.2777 (2)0.4008 (2)0.94108 (18)0.0326 (5)
O50.9524 (2)0.15286 (15)0.38857 (15)0.0165 (4)
O61.1904 (2)0.26159 (18)0.38501 (16)0.0182 (4)
O71.1373 (3)0.46983 (18)0.24125 (19)0.0334 (5)
O81.2807 (2)0.3638 (2)0.16880 (18)0.0371 (6)
N11.0324 (3)0.2999 (2)0.67719 (19)0.0185 (5)
N20.5920 (2)0.38299 (18)0.71702 (19)0.0146 (5)
N30.4050 (3)0.3727 (2)0.9245 (2)0.0217 (5)
N40.5077 (3)0.4240 (2)0.43389 (18)0.0179 (5)
N50.9564 (2)0.36491 (18)0.39696 (18)0.0141 (5)
N61.1564 (3)0.3888 (2)0.18846 (19)0.0230 (6)
C10.7414 (3)0.3615 (2)0.7078 (2)0.0132 (5)
C20.7644 (3)0.2549 (2)0.6690 (2)0.0167 (5)
H20.68130.20290.65370.020*
C30.9100 (3)0.2265 (2)0.6532 (2)0.0188 (6)
H30.92310.15630.62590.023*
C41.0168 (3)0.4019 (2)0.7153 (2)0.0179 (6)
H41.10300.45130.73040.021*
C50.8752 (3)0.4350 (2)0.7325 (2)0.0169 (6)
H50.86720.50580.76040.020*
C60.6158 (3)0.5053 (3)0.9027 (2)0.0148 (5)
C70.7441 (3)0.5753 (2)0.9531 (2)0.0189 (6)
H70.79360.61560.91000.023*
C80.7996 (3)0.5858 (2)1.0674 (2)0.0240 (6)
H80.88570.63291.09990.029*
C90.7271 (3)0.5264 (3)1.1326 (2)0.0245 (7)
H90.76560.53251.20890.029*
C100.5978 (3)0.4582 (2)1.0843 (2)0.0208 (6)
H100.54690.41971.12770.025*
C110.5441 (3)0.4472 (2)0.9712 (2)0.0162 (6)
C120.8049 (3)0.3782 (2)0.4049 (2)0.0120 (5)
C130.7734 (3)0.4806 (2)0.4510 (2)0.0163 (6)
H130.85340.53470.47220.020*
C140.6264 (3)0.4998 (2)0.4642 (2)0.0181 (5)
H140.60780.56690.49490.022*
C150.5302 (3)0.3265 (2)0.3884 (2)0.0165 (5)
H150.44640.27520.36720.020*
C160.6767 (3)0.3014 (2)0.3725 (2)0.0136 (5)
H160.69050.23390.34050.016*
C170.9459 (3)0.2526 (2)0.2084 (2)0.0145 (5)
C180.8167 (3)0.1850 (2)0.1552 (2)0.0179 (6)
H180.76720.14230.19670.021*
C190.7603 (3)0.1799 (2)0.0417 (2)0.0229 (6)
H190.67230.13490.00800.027*
C200.8324 (3)0.2406 (3)0.0223 (2)0.0245 (7)
H200.79330.23650.09870.029*
C210.9631 (3)0.3074 (2)0.0276 (2)0.0195 (6)
H211.01410.34760.01460.023*
C221.0173 (3)0.3137 (2)0.1415 (2)0.0157 (6)
O90.2408 (2)0.50194 (18)0.48520 (16)0.0183 (4)
O100.6923 (2)0.74683 (18)0.37557 (18)0.0203 (4)
H1A1.127 (3)0.280 (3)0.665 (3)0.054 (11)*
H4A0.411 (2)0.441 (2)0.444 (2)0.021 (8)*
H9A0.260 (3)0.500 (3)0.5558 (8)0.047 (11)*
H9B0.160 (2)0.460 (2)0.4517 (18)0.024 (9)*
H10A0.719 (4)0.751 (4)0.4468 (8)0.11 (2)*
H10B0.601 (2)0.780 (3)0.346 (2)0.034 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0127 (3)0.0152 (3)0.0156 (3)0.0016 (3)0.0055 (2)0.0026 (3)
S20.0098 (3)0.0162 (3)0.0138 (3)0.0013 (3)0.0044 (2)0.0012 (3)
O10.0119 (8)0.0220 (10)0.0201 (10)0.0049 (9)0.0064 (7)0.0009 (9)
O20.0242 (10)0.0133 (9)0.0209 (11)0.0000 (8)0.0102 (9)0.0042 (8)
O30.0376 (12)0.0285 (12)0.0288 (13)0.0115 (10)0.0095 (10)0.0019 (10)
O40.0157 (9)0.0515 (15)0.0329 (13)0.0051 (10)0.0109 (9)0.0064 (12)
O50.0194 (10)0.0153 (9)0.0158 (10)0.0043 (8)0.0067 (8)0.0053 (8)
O60.0099 (8)0.0269 (11)0.0190 (10)0.0008 (9)0.0061 (7)0.0016 (9)
O70.0378 (13)0.0292 (13)0.0329 (13)0.0111 (10)0.0101 (11)0.0060 (10)
O80.0180 (10)0.0689 (18)0.0274 (13)0.0077 (11)0.0114 (10)0.0055 (12)
N10.0135 (11)0.0249 (12)0.0184 (12)0.0064 (10)0.0067 (9)0.0022 (10)
N20.0116 (10)0.0147 (11)0.0196 (12)0.0000 (9)0.0078 (9)0.0001 (9)
N30.0209 (12)0.0263 (14)0.0176 (13)0.0040 (11)0.0057 (10)0.0071 (10)
N40.0148 (11)0.0224 (13)0.0179 (12)0.0020 (10)0.0072 (9)0.0009 (10)
N50.0108 (10)0.0177 (11)0.0144 (11)0.0028 (9)0.0046 (9)0.0035 (9)
N60.0193 (12)0.0354 (15)0.0146 (12)0.0067 (11)0.0054 (10)0.0064 (11)
C10.0123 (11)0.0178 (13)0.0100 (13)0.0024 (10)0.0042 (10)0.0041 (10)
C20.0166 (11)0.0179 (12)0.0164 (13)0.0044 (12)0.0062 (10)0.0015 (12)
C30.0177 (13)0.0173 (14)0.0217 (15)0.0033 (11)0.0062 (11)0.0025 (11)
C40.0133 (12)0.0214 (14)0.0181 (14)0.0009 (11)0.0035 (10)0.0014 (12)
C50.0145 (12)0.0147 (13)0.0211 (15)0.0009 (11)0.0048 (11)0.0006 (11)
C60.0151 (12)0.0134 (13)0.0166 (13)0.0032 (12)0.0059 (10)0.0000 (12)
C70.0206 (13)0.0143 (13)0.0224 (15)0.0036 (11)0.0075 (12)0.0006 (11)
C80.0252 (15)0.0225 (15)0.0224 (16)0.0067 (13)0.0040 (13)0.0035 (12)
C90.0255 (14)0.0278 (16)0.0184 (15)0.0041 (13)0.0038 (12)0.0030 (12)
C100.0236 (14)0.0239 (15)0.0178 (15)0.0041 (12)0.0106 (12)0.0047 (12)
C110.0103 (11)0.0175 (13)0.0217 (15)0.0013 (10)0.0062 (11)0.0027 (11)
C120.0152 (12)0.0125 (12)0.0083 (12)0.0024 (10)0.0038 (10)0.0017 (10)
C130.0168 (12)0.0141 (13)0.0183 (14)0.0048 (11)0.0060 (11)0.0026 (11)
C140.0225 (13)0.0147 (12)0.0186 (13)0.0018 (12)0.0087 (11)0.0020 (12)
C150.0136 (12)0.0198 (13)0.0173 (14)0.0002 (11)0.0066 (11)0.0031 (11)
C160.0093 (11)0.0150 (12)0.0173 (14)0.0026 (10)0.0051 (10)0.0032 (11)
C170.0160 (12)0.0150 (12)0.0119 (13)0.0007 (12)0.0033 (10)0.0004 (11)
C180.0193 (13)0.0163 (14)0.0198 (15)0.0015 (12)0.0084 (12)0.0037 (12)
C190.0262 (15)0.0190 (15)0.0202 (15)0.0061 (13)0.0022 (12)0.0005 (12)
C200.0322 (15)0.0275 (16)0.0115 (14)0.0032 (14)0.0033 (12)0.0006 (13)
C210.0193 (13)0.0221 (15)0.0205 (15)0.0031 (12)0.0110 (12)0.0049 (12)
C220.0118 (11)0.0181 (14)0.0172 (14)0.0001 (11)0.0045 (11)0.0019 (11)
O90.0157 (9)0.0210 (10)0.0194 (11)0.0003 (9)0.0072 (8)0.0056 (10)
O100.0170 (9)0.0221 (10)0.0215 (11)0.0022 (9)0.0057 (8)0.0043 (10)
Geometric parameters (Å, º) top
S1—O21.4464 (19)C6—C111.403 (3)
S1—O11.4521 (17)C7—C81.394 (4)
S1—N21.581 (2)C7—H70.9300
S1—C61.787 (3)C8—C91.383 (4)
S2—O51.4416 (19)C8—H80.9300
S2—O61.4568 (17)C9—C101.377 (4)
S2—N51.578 (2)C9—H90.9300
S2—C171.787 (3)C10—C111.380 (4)
O3—N31.211 (3)C10—H100.9300
O4—N31.237 (3)C12—C161.409 (3)
O7—N61.221 (3)C12—C131.421 (3)
O8—N61.221 (3)C13—C141.362 (3)
N1—C41.336 (4)C13—H130.9300
N1—C31.345 (3)C14—H140.9300
N1—H1A0.918 (10)C15—C161.385 (3)
N2—C11.367 (3)C15—H150.9300
N3—C111.478 (3)C16—H160.9300
N4—C141.342 (3)C17—C181.386 (4)
N4—C151.344 (3)C17—C221.404 (3)
N4—H4A0.913 (10)C18—C191.380 (4)
N5—C121.365 (3)C18—H180.9300
N6—C221.482 (3)C19—C201.379 (4)
C1—C21.405 (4)C19—H190.9300
C1—C51.419 (4)C20—C211.380 (4)
C2—C31.387 (3)C20—H200.9300
C2—H20.9300C21—C221.385 (4)
C3—H30.9300C21—H210.9300
C4—C51.376 (3)O9—H9A0.864 (10)
C4—H40.9300O9—H9B0.867 (10)
C5—H50.9300O10—H10A0.867 (10)
C6—C71.389 (4)O10—H10B0.870 (10)
O2—S1—O1116.08 (11)C9—C8—C7120.3 (3)
O2—S1—N2114.62 (10)C9—C8—H8119.9
O1—S1—N2106.27 (11)C7—C8—H8119.9
O2—S1—C6105.68 (13)C10—C9—C8119.8 (3)
O1—S1—C6105.03 (11)C10—C9—H9120.1
N2—S1—C6108.55 (13)C8—C9—H9120.1
O5—S2—O6116.29 (11)C9—C10—C11119.8 (3)
O5—S2—N5114.48 (10)C9—C10—H10120.1
O6—S2—N5106.33 (12)C11—C10—H10120.1
O5—S2—C17105.23 (12)C10—C11—C6121.9 (3)
O6—S2—C17105.61 (11)C10—C11—N3117.1 (2)
N5—S2—C17108.33 (12)C6—C11—N3121.0 (2)
C4—N1—C3121.3 (2)N5—C12—C16127.0 (2)
C4—N1—H1A120 (2)N5—C12—C13116.4 (2)
C3—N1—H1A119 (2)C16—C12—C13116.6 (2)
C1—N2—S1123.21 (19)C14—C13—C12120.2 (2)
O3—N3—O4124.9 (3)C14—C13—H13119.9
O3—N3—C11119.3 (2)C12—C13—H13119.9
O4—N3—C11115.9 (2)N4—C14—C13121.6 (3)
C14—N4—C15120.7 (2)N4—C14—H14119.2
C14—N4—H4A118.3 (19)C13—C14—H14119.2
C15—N4—H4A121.0 (19)N4—C15—C16120.9 (2)
C12—N5—S2123.16 (18)N4—C15—H15119.6
O7—N6—O8125.8 (3)C16—C15—H15119.6
O7—N6—C22118.2 (2)C15—C16—C12120.0 (2)
O8—N6—C22115.9 (2)C15—C16—H16120.0
N2—C1—C2116.3 (2)C12—C16—H16120.0
N2—C1—C5127.2 (2)C18—C17—C22116.9 (2)
C2—C1—C5116.5 (2)C18—C17—S2119.0 (2)
C3—C2—C1120.6 (2)C22—C17—S2124.1 (2)
C3—C2—H2119.7C19—C18—C17121.1 (2)
C1—C2—H2119.7C19—C18—H18119.4
N1—C3—C2120.3 (2)C17—C18—H18119.4
N1—C3—H3119.8C20—C19—C18121.0 (3)
C2—C3—H3119.8C20—C19—H19119.5
N1—C4—C5121.1 (3)C18—C19—H19119.5
N1—C4—H4119.5C19—C20—C21119.6 (3)
C5—C4—H4119.5C19—C20—H20120.2
C4—C5—C1120.2 (2)C21—C20—H20120.2
C4—C5—H5119.9C20—C21—C22119.1 (3)
C1—C5—H5119.9C20—C21—H21120.4
C7—C6—C11117.3 (2)C22—C21—H21120.4
C7—C6—S1119.3 (2)C21—C22—C17122.3 (2)
C11—C6—S1123.3 (2)C21—C22—N6115.7 (2)
C6—C7—C8120.9 (3)C17—C22—N6122.0 (2)
C6—C7—H7119.6H9A—O9—H9B111.6 (16)
C8—C7—H7119.6H10A—O10—H10B110.7 (16)
O2—S1—N2—C136.7 (2)O4—N3—C11—C1062.9 (3)
O1—S1—N2—C1166.3 (2)O3—N3—C11—C664.4 (4)
C6—S1—N2—C181.2 (2)O4—N3—C11—C6116.0 (3)
O5—S2—N5—C1236.0 (2)S2—N5—C12—C164.2 (4)
O6—S2—N5—C12165.8 (2)S2—N5—C12—C13175.7 (2)
C17—S2—N5—C1281.0 (2)N5—C12—C13—C14178.5 (2)
S1—N2—C1—C2178.07 (19)C16—C12—C13—C141.4 (4)
S1—N2—C1—C51.5 (4)C15—N4—C14—C130.6 (4)
N2—C1—C2—C3177.8 (2)C12—C13—C14—N40.4 (4)
C5—C1—C2—C31.9 (4)C14—N4—C15—C160.6 (4)
C4—N1—C3—C20.8 (4)N4—C15—C16—C120.4 (4)
C1—C2—C3—N11.4 (4)N5—C12—C16—C15178.5 (2)
C3—N1—C4—C50.7 (4)C13—C12—C16—C151.3 (4)
N1—C4—C5—C11.2 (4)O5—S2—C17—C1818.6 (2)
N2—C1—C5—C4177.8 (3)O6—S2—C17—C18142.2 (2)
C2—C1—C5—C41.8 (4)N5—S2—C17—C18104.2 (2)
O2—S1—C6—C714.8 (2)O5—S2—C17—C22159.0 (2)
O1—S1—C6—C7138.0 (2)O6—S2—C17—C2235.5 (3)
N2—S1—C6—C7108.6 (2)N5—S2—C17—C2278.1 (2)
O2—S1—C6—C11161.6 (2)C22—C17—C18—C191.0 (4)
O1—S1—C6—C1138.3 (3)S2—C17—C18—C19178.8 (2)
N2—S1—C6—C1175.0 (2)C17—C18—C19—C201.1 (4)
C11—C6—C7—C80.6 (4)C18—C19—C20—C210.1 (4)
S1—C6—C7—C8177.2 (2)C19—C20—C21—C221.2 (4)
C6—C7—C8—C90.1 (4)C20—C21—C22—C171.3 (4)
C7—C8—C9—C101.1 (4)C20—C21—C22—N6179.0 (2)
C8—C9—C10—C111.7 (4)C18—C17—C22—C210.2 (4)
C9—C10—C11—C61.2 (4)S2—C17—C22—C21177.5 (2)
C9—C10—C11—N3180.0 (2)C18—C17—C22—N6179.9 (2)
C7—C6—C11—C100.0 (4)S2—C17—C22—N62.2 (4)
S1—C6—C11—C10176.4 (2)O7—N6—C22—C21116.6 (3)
C7—C6—C11—N3178.8 (2)O8—N6—C22—C2162.4 (3)
S1—C6—C11—N32.4 (4)O7—N6—C22—C1763.7 (4)
O3—N3—C11—C10116.7 (3)O8—N6—C22—C17117.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O90.91 (1)1.87 (1)2.764 (3)167 (3)
O9—H9A···O10.86 (1)2.12 (1)2.967 (3)166 (3)
N1—H1A···O10i0.92 (1)1.84 (1)2.757 (3)174 (4)
O9—H9B···N5ii0.87 (1)2.04 (1)2.901 (3)170 (2)
O9—H9B···O6ii0.87 (1)2.56 (2)3.125 (3)123 (2)
O10—H10A···O6iii0.87 (1)2.05 (1)2.914 (3)174 (4)
O10—H10B···N2iv0.87 (1)2.04 (1)2.902 (3)170 (3)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+1; (iv) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H9N3O4S·H2O
Mr297.29
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)8.7206 (17), 11.972 (2), 12.743 (3)
β (°) 107.65 (3)
V3)1267.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.14 × 0.10 × 0.04
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.962, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10348, 4633, 3587
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.03
No. of reflections4633
No. of parameters385
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.40
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.52 (6)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O90.913 (10)1.868 (12)2.764 (3)167 (3)
O9—H9A···O10.864 (10)2.122 (11)2.967 (3)166 (3)
N1—H1A···O10i0.918 (10)1.843 (11)2.757 (3)174 (4)
O9—H9B···N5ii0.867 (10)2.043 (11)2.901 (3)170 (2)
O9—H9B···O6ii0.867 (10)2.56 (2)3.125 (3)123 (2)
O10—H10A···O6iii0.867 (10)2.051 (11)2.914 (3)174 (4)
O10—H10B···N2iv0.870 (10)2.042 (12)2.902 (3)170 (3)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+1; (iv) x+1, y+1/2, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDamiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735—2752.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J.-S., Chen, L.-G., Zhang, Y.-Y., Xu, Y.-J., Deng, Y., Zeng, T. & Huang, P.-M. (2007). J. Chem. Res. pp. 350–352.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds