metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Ferrocenylphen­yl)-4,4,5,5-tetra­methyl-1,3,2-dioxaborolane

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: pdw.boyd@auckland.ac.nz

(Received 23 October 2008; accepted 28 October 2008; online 8 November 2008)

In the title compound,, [Fe(C5H5)(C17H20BO2)], the two near parallel cyclo­penta­dienyl rings of the ferrocene group are eclipsed. The benzene ring is tilted with respect to the attached cyclo­penta­diene ring by 17.0 (1)° and by 24.2 (1)° with respect to the dioxaborolane ring. The mol­ecules assemble in the crystal via C—H⋯π inter­actions between the cyclo­penta­dienyl H atoms and the benzene and cyclo­penta­dienyl rings of neighbouring mol­ecules.

Related literature

For the related tris­(4-ferrocenylphen­yl)boroxine benzene solvate, see: Makarov et al. (2004[Makarov, M. V., Dyadchenko, V. P. & Antipin, M. Yu. (2004). Russ. Chem. Bull. 53, 2768-2773.]). For other related structures, see: Anderson et al. (2003[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13-m15.]); Nyamori & Bala (2008[Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1376.]). For related literature, see: Leclerc et al. (2003[Leclerc, N., Serieys, I. & Attias, A.-J. (2003). Tetrahedron Lett. 44, 5879-5882.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C17H20BO2)]

  • Mr = 388.08

  • Monoclinic, P 21 /c

  • a = 12.4439 (3) Å

  • b = 12.9832 (3) Å

  • c = 13.0728 (3) Å

  • β = 117.126 (1)°

  • V = 1879.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 89 (2) K

  • 0.37 × 0.37 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.849

  • 23134 measured reflections

  • 4442 independent reflections

  • 3984 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.03

  • 4442 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯C12i 0.93 2.86 3.6302 (19) 141
C5—H5⋯C6ii 0.93 2.62 3.538 (2) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, (I), was prepared from the reaction of lithiated 4-bromophenylferrocene with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxoborolane in tetrahydrofuran. Unlike the related tris(4-ferrocenylphenyl)boroxine benzene solvate (Makarov et al. (2004), the 2-(4-ferrocenyl-phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane is monomeric (Fig. 1). The two cyclopentadienyl rings are nearly eclipsed, average torsion angle 2.1 (1)°, with a small tilt of the two planes (C1—C5 and C6—C10) of 3.5 (1)°. The distances of the iron atom to the ring centroids were 1.6514 (2)Å and 1.6475 (2) Å respectively. The phenyl ring is tilted by 17.0 (1)° with respect to the (C6—C10) plane. This value is slightly higher than that observed in similar structures (Anderson et al. (2003), Nyamori and Bala (2008)). The dioxaborolane ring is in a half-chair conformation, with an O1—C17—C18—O2 torsion angle of 24.2 (1)°. The BO2 group is rotated away from the plane of the phenyl ring system by 11.1 (2)°, and the angle between the dioxaborolane ring and the phenylplane is 9.9 (1)°. The molecules pack in the crystal, (Fig. 2), with C—H···π interactions between cyclopentadienyl hydrogen atoms and the phenyl and cyclopentadienyl rings of neighbouring molecules, Table 1.

Related literature top

For the related tris(4-ferrocenylphenyl)boroxine benzene

solvate, see: Makarov et al. (2004). For other related structures, see: Anderson et al. (2003); Nyamori & Bala (2008). For related literature, see: Leclerc et al. (2003).

Experimental top

To a solution of 4-bromophenyl ferrocene (0.2 g, 0.59 mmol) in dry THF (10 mL) stirred at -78°C under nitrogen was added dropwise a solution of n-BuLi 2.5M in hexane (0.51 ml, 0.88 mmol).The mixture was then stirred at -78 °C for 20 minutes. Then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (0.18 ml, 0.88 mmol) was added, the stirring was kept at -78°C for 2 h and the mixture allowed to warm to -35 C and stir for 1 h and then warmed to room temperature. The reaction mixture was then poured into water and extracted with diethyl ether (2 x 25 ml). The combined organic layers were washed with brine and dried with Na2SO4. The solvent removed under reduced pressure and purified by column chromatography (SiO2, Hexane/DCM =2/1) to give the pure compound 2-(4-ferrocenyl-phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.052 g, 0.129 mmol, 23%) as an orange solid. FAB-MS (C22H2510BFeO2) 387.13293 (C22H2511BFeO2) 388.12934. 1H NMR (CDCl3, 300 MHz) δ 1.36 (CH3, s 12H), 4.02 (CpH, s, 5H), 4.33 (CpH, t, J=1.84, 2H), 4.68 (CpH, t, J =1.85 2H), 7.46 (ArH, d, J=8.3 2H), 7.72 (ArH, d, J=8.3 2H) p.p.m..

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 and 1.5 times Ueq(C) for aromatic and alkyl groups respectively. In the case of the methyl groups protons were rotated to fit the H-atom positions to the observed electron density.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I) showing C—H..π interactions between adjacent molecules. [Symmetry codes: x,y,z and 1 - x,1 - y,1 - z]
2-(4-Ferrocenylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane top
Crystal data top
[Fe(C5H5)(C17H20BO2)]F(000) = 816
Mr = 388.08Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9781 reflections
a = 12.4439 (3) Åθ = 1.8–27.8°
b = 12.9832 (3) ŵ = 0.82 mm1
c = 13.0728 (3) ÅT = 89 K
β = 117.126 (1)°Block, orange
V = 1879.75 (8) Å30.37 × 0.37 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4442 independent reflections
Radiation source: fine-focus sealed tube3984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1614
Tmin = 0.717, Tmax = 0.849k = 017
23134 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0491P)2 + 1.0943P]
where P = (Fo2 + 2Fc2)/3
4442 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe(C5H5)(C17H20BO2)]V = 1879.75 (8) Å3
Mr = 388.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4439 (3) ŵ = 0.82 mm1
b = 12.9832 (3) ÅT = 89 K
c = 13.0728 (3) Å0.37 × 0.37 × 0.2 mm
β = 117.126 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4442 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3984 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.849Rint = 0.027
23134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
4442 reflectionsΔρmin = 0.31 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.244744 (18)0.661122 (14)0.209954 (16)0.01545 (8)
O20.36539 (9)1.21833 (8)0.03562 (9)0.0207 (2)
O10.16554 (9)1.19391 (8)0.16076 (9)0.0195 (2)
C110.26427 (12)0.89643 (10)0.14427 (11)0.0157 (3)
C140.26540 (13)1.05937 (10)0.00034 (12)0.0167 (3)
C180.33635 (13)1.29767 (11)0.12386 (12)0.0187 (3)
C20.16209 (14)0.52057 (11)0.16048 (14)0.0231 (3)
H20.11050.49010.18540.028*
C160.37235 (12)0.94523 (10)0.16343 (12)0.0178 (3)
H160.44470.92390.22410.021*
C70.15815 (13)0.78484 (11)0.23606 (12)0.0186 (3)
H70.07890.80500.18950.022*
C130.15859 (13)1.00753 (10)0.02096 (12)0.0172 (3)
H130.08681.02690.08360.021*
C80.26304 (13)0.81901 (11)0.22597 (12)0.0167 (3)
C90.36571 (13)0.76831 (11)0.31467 (12)0.0187 (3)
H90.44540.77580.32810.022*
C60.19744 (14)0.71467 (11)0.33018 (12)0.0209 (3)
H60.14800.68110.35560.025*
B10.26500 (15)1.15783 (11)0.06779 (14)0.0174 (3)
C150.37260 (13)1.02504 (11)0.09282 (12)0.0184 (3)
H150.44531.05640.10710.022*
C50.23381 (15)0.61510 (11)0.05503 (13)0.0243 (3)
H50.23700.65720.00110.029*
C210.39377 (14)1.39832 (11)0.06503 (13)0.0238 (3)
H21A0.36801.41430.00790.036*
H21B0.36951.45260.12100.036*
H21C0.48011.39160.02900.036*
C40.33403 (14)0.56821 (11)0.14749 (13)0.0226 (3)
H40.41440.57450.16280.027*
C100.32509 (14)0.70475 (11)0.37867 (12)0.0208 (3)
H100.37350.66390.44130.025*
C120.15769 (12)0.92783 (10)0.04947 (12)0.0169 (3)
H120.08540.89490.03350.020*
C170.19486 (13)1.29760 (11)0.18488 (13)0.0201 (3)
C220.39120 (14)1.26270 (11)0.20117 (14)0.0235 (3)
H22A0.47611.25100.15550.035*
H22B0.37901.31500.25730.035*
H22C0.35301.20000.23950.035*
C30.29014 (14)0.50988 (11)0.21282 (14)0.0228 (3)
H30.33690.47150.27830.027*
C200.14060 (15)1.37292 (13)0.13159 (16)0.0294 (3)
H20A0.05541.36050.16250.044*
H20B0.15391.44220.14890.044*
H20C0.17831.36350.04980.044*
C190.13736 (16)1.31085 (15)0.31429 (14)0.0312 (4)
H19A0.16531.25740.34710.047*
H19B0.15931.37680.33240.047*
H19C0.05111.30680.34530.047*
C10.12727 (14)0.58627 (12)0.06311 (13)0.0249 (3)
H10.04890.60670.01360.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02072 (12)0.00975 (11)0.01600 (12)0.00098 (7)0.00849 (9)0.00033 (7)
O20.0219 (5)0.0155 (5)0.0231 (5)0.0012 (4)0.0087 (4)0.0059 (4)
O10.0234 (5)0.0134 (5)0.0205 (5)0.0019 (4)0.0090 (4)0.0031 (4)
C110.0225 (6)0.0095 (5)0.0171 (6)0.0009 (5)0.0106 (5)0.0026 (5)
C140.0228 (7)0.0119 (6)0.0174 (6)0.0003 (5)0.0110 (5)0.0002 (5)
C180.0234 (7)0.0130 (6)0.0206 (7)0.0000 (5)0.0107 (6)0.0037 (5)
C20.0296 (8)0.0134 (6)0.0292 (8)0.0063 (6)0.0159 (6)0.0055 (6)
C160.0196 (6)0.0135 (6)0.0192 (6)0.0003 (5)0.0078 (5)0.0001 (5)
C70.0243 (7)0.0137 (6)0.0202 (7)0.0002 (5)0.0122 (6)0.0005 (5)
C130.0214 (7)0.0144 (6)0.0155 (6)0.0007 (5)0.0080 (5)0.0011 (5)
C80.0235 (7)0.0105 (6)0.0170 (6)0.0017 (5)0.0099 (5)0.0018 (5)
C90.0232 (7)0.0140 (6)0.0176 (6)0.0024 (5)0.0081 (6)0.0015 (5)
C60.0310 (8)0.0147 (6)0.0214 (7)0.0024 (5)0.0158 (6)0.0000 (5)
B10.0228 (8)0.0131 (7)0.0182 (7)0.0004 (5)0.0111 (6)0.0004 (5)
C150.0207 (6)0.0142 (6)0.0215 (7)0.0014 (5)0.0106 (6)0.0008 (5)
C50.0386 (9)0.0156 (7)0.0207 (7)0.0018 (6)0.0153 (6)0.0020 (5)
C210.0284 (7)0.0160 (7)0.0263 (7)0.0033 (6)0.0118 (6)0.0005 (6)
C40.0291 (7)0.0154 (6)0.0273 (7)0.0018 (6)0.0165 (6)0.0046 (6)
C100.0305 (8)0.0149 (6)0.0153 (6)0.0012 (5)0.0090 (6)0.0011 (5)
C120.0210 (6)0.0127 (6)0.0185 (6)0.0031 (5)0.0102 (5)0.0032 (5)
C170.0246 (7)0.0128 (6)0.0241 (7)0.0002 (5)0.0122 (6)0.0038 (5)
C220.0303 (8)0.0157 (6)0.0308 (8)0.0003 (6)0.0193 (7)0.0017 (6)
C30.0316 (8)0.0103 (6)0.0272 (7)0.0015 (5)0.0140 (6)0.0007 (5)
C200.0302 (8)0.0184 (7)0.0438 (10)0.0026 (6)0.0205 (8)0.0005 (7)
C190.0293 (8)0.0348 (9)0.0256 (8)0.0004 (7)0.0090 (7)0.0131 (7)
C10.0274 (8)0.0194 (7)0.0216 (7)0.0019 (6)0.0057 (6)0.0056 (6)
Geometric parameters (Å, º) top
Fe1—C62.0357 (14)C13—C121.3885 (19)
Fe1—C32.0388 (14)C13—H130.9300
Fe1—C102.0431 (14)C8—C91.435 (2)
Fe1—C42.0454 (15)C9—C101.4220 (19)
Fe1—C72.0477 (14)C9—H90.9300
Fe1—C22.0492 (14)C6—C101.422 (2)
Fe1—C92.0488 (14)C6—H60.9300
Fe1—C12.0512 (15)C15—H150.9300
Fe1—C52.0558 (15)C5—C41.419 (2)
Fe1—C82.0626 (14)C5—C11.427 (2)
O2—B11.3695 (19)C5—H50.9300
O2—C181.4636 (16)C21—H21A0.9600
O1—B11.3626 (19)C21—H21B0.9600
O1—C171.4663 (16)C21—H21C0.9600
C11—C121.4007 (19)C4—C31.424 (2)
C11—C161.4020 (19)C4—H40.9300
C11—C81.4718 (18)C10—H100.9300
C14—C131.3998 (19)C12—H120.9300
C14—C151.403 (2)C17—C191.516 (2)
C14—B11.557 (2)C17—C201.525 (2)
C18—C211.519 (2)C22—H22A0.9600
C18—C221.524 (2)C22—H22B0.9600
C18—C171.567 (2)C22—H22C0.9600
C2—C31.426 (2)C3—H30.9300
C2—C11.426 (2)C20—H20A0.9600
C2—H20.9300C20—H20B0.9600
C16—C151.3887 (19)C20—H20C0.9600
C16—H160.9300C19—H19A0.9600
C7—C61.426 (2)C19—H19B0.9600
C7—C81.4405 (19)C19—H19C0.9600
C7—H70.9300C1—H10.9300
C6—Fe1—C3119.34 (6)C11—C8—Fe1129.97 (9)
C6—Fe1—C1040.82 (6)C10—C9—C8108.51 (13)
C3—Fe1—C10104.60 (6)C10—C9—Fe169.45 (8)
C6—Fe1—C4155.59 (6)C8—C9—Fe170.09 (8)
C3—Fe1—C440.80 (6)C10—C9—H9125.7
C10—Fe1—C4120.46 (6)C8—C9—H9125.7
C6—Fe1—C740.89 (6)Fe1—C9—H9126.3
C3—Fe1—C7156.19 (6)C10—C6—C7108.43 (12)
C10—Fe1—C768.79 (6)C10—C6—Fe169.87 (8)
C4—Fe1—C7162.19 (6)C7—C6—Fe170.01 (8)
C6—Fe1—C2105.52 (6)C10—C6—H6125.8
C3—Fe1—C240.82 (6)C7—C6—H6125.8
C10—Fe1—C2121.05 (6)Fe1—C6—H6125.9
C4—Fe1—C268.57 (6)O1—B1—O2114.03 (12)
C7—Fe1—C2121.64 (6)O1—B1—C14123.86 (13)
C6—Fe1—C968.60 (6)O2—B1—C14122.06 (13)
C3—Fe1—C9121.93 (6)C16—C15—C14121.35 (13)
C10—Fe1—C940.67 (5)C16—C15—H15119.3
C4—Fe1—C9107.46 (6)C14—C15—H15119.3
C7—Fe1—C968.77 (6)C4—C5—C1108.05 (13)
C2—Fe1—C9157.80 (6)C4—C5—Fe169.37 (8)
C6—Fe1—C1123.42 (6)C1—C5—Fe169.50 (9)
C3—Fe1—C168.54 (6)C4—C5—H5126.0
C10—Fe1—C1158.56 (6)C1—C5—H5126.0
C4—Fe1—C168.41 (6)Fe1—C5—H5126.7
C7—Fe1—C1108.84 (6)C18—C21—H21A109.5
C2—Fe1—C140.69 (6)C18—C21—H21B109.5
C9—Fe1—C1160.07 (6)H21A—C21—H21B109.5
C6—Fe1—C5161.33 (7)C18—C21—H21C109.5
C3—Fe1—C568.38 (6)H21A—C21—H21C109.5
C10—Fe1—C5157.54 (7)H21B—C21—H21C109.5
C4—Fe1—C540.47 (6)C5—C4—C3108.11 (13)
C7—Fe1—C5126.07 (6)C5—C4—Fe170.16 (9)
C2—Fe1—C568.40 (6)C3—C4—Fe169.36 (8)
C9—Fe1—C5123.65 (6)C5—C4—H4125.9
C1—Fe1—C540.67 (6)C3—C4—H4125.9
C6—Fe1—C868.88 (5)Fe1—C4—H4126.1
C3—Fe1—C8159.79 (6)C9—C10—C6108.03 (12)
C10—Fe1—C868.77 (5)C9—C10—Fe169.88 (8)
C4—Fe1—C8124.87 (6)C6—C10—Fe169.31 (8)
C7—Fe1—C841.03 (5)C9—C10—H10126.0
C2—Fe1—C8158.96 (6)C6—C10—H10126.0
C9—Fe1—C840.85 (6)Fe1—C10—H10126.4
C1—Fe1—C8124.36 (6)C13—C12—C11120.85 (13)
C5—Fe1—C8110.09 (6)C13—C12—H12119.6
B1—O2—C18107.39 (11)C11—C12—H12119.6
B1—O1—C17107.07 (11)O1—C17—C19107.88 (12)
C12—C11—C16118.08 (12)O1—C17—C20106.56 (12)
C12—C11—C8121.46 (12)C19—C17—C20110.78 (14)
C16—C11—C8120.36 (13)O1—C17—C18102.89 (11)
C13—C14—C15117.52 (12)C19—C17—C18114.64 (12)
C13—C14—B1121.73 (13)C20—C17—C18113.31 (12)
C15—C14—B1120.50 (13)C18—C22—H22A109.5
O2—C18—C21108.44 (11)C18—C22—H22B109.5
O2—C18—C22106.79 (11)H22A—C22—H22B109.5
C21—C18—C22110.03 (12)C18—C22—H22C109.5
O2—C18—C17102.54 (10)H22A—C22—H22C109.5
C21—C18—C17114.71 (12)H22B—C22—H22C109.5
C22—C18—C17113.65 (12)C4—C3—C2108.11 (13)
C3—C2—C1107.76 (13)C4—C3—Fe169.85 (8)
C3—C2—Fe169.20 (8)C2—C3—Fe169.98 (8)
C1—C2—Fe169.73 (8)C4—C3—H3125.9
C3—C2—H2126.1C2—C3—H3125.9
C1—C2—H2126.1Fe1—C3—H3125.8
Fe1—C2—H2126.5C17—C20—H20A109.5
C15—C16—C11120.74 (13)C17—C20—H20B109.5
C15—C16—H16119.6H20A—C20—H20B109.5
C11—C16—H16119.6C17—C20—H20C109.5
C6—C7—C8107.89 (13)H20A—C20—H20C109.5
C6—C7—Fe169.10 (8)H20B—C20—H20C109.5
C8—C7—Fe170.04 (8)C17—C19—H19A109.5
C6—C7—H7126.1C17—C19—H19B109.5
C8—C7—H7126.1H19A—C19—H19B109.5
Fe1—C7—H7126.4C17—C19—H19C109.5
C12—C13—C14121.36 (13)H19A—C19—H19C109.5
C12—C13—H13119.3H19B—C19—H19C109.5
C14—C13—H13119.3C2—C1—C5107.97 (14)
C9—C8—C7107.14 (12)C2—C1—Fe169.58 (8)
C9—C8—C11126.85 (12)C5—C1—Fe169.84 (9)
C7—C8—C11125.90 (13)C2—C1—H1126.0
C9—C8—Fe169.06 (8)C5—C1—H1126.0
C7—C8—Fe168.93 (8)Fe1—C1—H1126.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···C12i0.932.863.6302 (19)141
C5—H5···C6ii0.932.623.538 (2)168
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C17H20BO2)]
Mr388.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)12.4439 (3), 12.9832 (3), 13.0728 (3)
β (°) 117.126 (1)
V3)1879.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.37 × 0.37 × 0.2
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.717, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
23134, 4442, 3984
Rint0.027
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.04
No. of reflections4442
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···C12i0.932.863.6302 (19)141.4
C5—H5···C6ii0.932.623.538 (2)167.6
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We thank Tania Groutso for help with the data collection.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13–m15.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeclerc, N., Serieys, I. & Attias, A.-J. (2003). Tetrahedron Lett. 44, 5879–5882.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakarov, M. V., Dyadchenko, V. P. & Antipin, M. Yu. (2004). Russ. Chem. Bull. 53, 2768–2773.  Web of Science CrossRef CAS Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds