organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl­acetamide–4-iodo­benzene­sulfonic acid–water (1/1/1)

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 19 September 2008; accepted 10 November 2008; online 20 November 2008)

In the title compound, C6H5IO3S·C4H9NO·H2O, N,N-dimethylacetamide and 4-iodobenzenesulfonic acidmolecules are linked by an intramolecular C—H⋯O hydrogen bond. In the crystal structure, inter­molecular O—H⋯O, O—H⋯I and C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For a related structure, see: Wu et al. (2000[Wu, J. S., Chi, C. Y., Wang, X. H., Li, J., Zhao, X. J. & Wang, F. S. (2000). Synth. Commun. 30, 4293-4298.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5IO3S·C4H9NO·H2O

  • Mr = 389.21

  • Orthorhombic, P c a 21

  • a = 14.173 (3) Å

  • b = 7.7480 (15) Å

  • c = 13.272 (3) Å

  • V = 1457.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.539, Tmax = 0.799

  • 1490 measured reflections

  • 1490 independent reflections

  • 1096 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.162

  • S = 1.07

  • 1490 reflections

  • 172 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.53 e Å−3

  • Δρmin = −2.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7 Friedel pairs

  • Flack parameter: 0.13 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.87 (13) 1.97 (15) 2.765 (16) 151 (14)
O1W—H1WB⋯O3ii 0.94 (10) 1.85 (15) 2.657 (16) 143 (17)
O2—H2A⋯I1iii 0.85 2.57 3.208 (16) 133
C1—H1B⋯O3iv 0.93 2.46 3.378 (15) 168
C5—H5A⋯O1v 0.93 2.55 3.192 (17) 126
C9—H9A⋯O3 0.96 2.56 3.48 (2) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z-1]; (ii) x+1, y-1, z-1; (iii) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The crystal structure of the title compound with a comb-like structure illustrate the three different components linked by weak interactions based on hydrogen bonds. Furthermore, the hydrolysis mechanism of the innersalt, which was formed from 4-iodobenzenesulfonyl chloride and N,N-dimethylacetamide, was understood (Wu et al., 2000). Meanwhile, the complicated hydrolysate was finally confirmed. We report herein its crystal structure.

The asymmetric unit of the title compound contains N,N-dimethylacetamide, 4-iodobenzenesulfonic acid and water molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of two nonplanar five-membered rings B (S/O1/C2/C3/H2B) and C (O4/N1/C8/C10/H8A), having envelope conformations with O1 and H8A atoms displaced by 0.193 (3) and 0.194 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular O-H···O, O-H···I and C-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. As can be seen from the packing diagram (Fig. 3), the molecules are stacked along the b axis. The comb-like structure depends on C-H···O hydrogen bonds. The 4-iodobenzenesulfonic acid molecules constitute the main chain and the N,N-dimethylacetamide molecules intermesh to each other as the branches.

Related literature top

For a related structure, see: Wu et al. (2000). For bond-length data, see: Allen et al. (1987).

Experimental top

Addition of N,N-dimethylacetamide (1.8 ml, 0.02 mol) into 4-iodobenzenesulfonyl chloride (6.1 g, 0.02 mol) gave milk-white solution of innersalt (Wu et al., 2000). The innersalt was dissolved in acetone (20 ml) and placed in moist chamber to crystallize. The crystals were obtained by evaporating solvent slowly at room temperature for about 40 d.

Refinement top

Water H atoms were located in difference syntheses and refined as [O-H = 0.88 (9) Å and 0.94 (9) Å; Uiso(H) = 0.093 Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.85 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A packing diagram of the title compound, showing the formation of the supramolecular comb-like structure. For the sake of clarity, water molecules have been omitted.
N,N-Dimethylacetamide–4-iodobenzenesulfonic acid–water (1/1/1) top
Crystal data top
C6H5IO3S·C4H9NO·H2ODx = 1.774 Mg m3
Mr = 389.21Melting point: 363 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 14.173 (3) Åθ = 10–13°
b = 7.7480 (15) ŵ = 2.35 mm1
c = 13.272 (3) ÅT = 294 K
V = 1457.4 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 768
Data collection top
Enraf–Nonius CAD-4
diffractometer
1096 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.9°, θmin = 2.6°
ω/2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.539, Tmax = 0.799l = 016
1490 measured reflections3 standard reflections every 120 min
1490 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.1045P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1490 reflectionsΔρmax = 1.53 e Å3
172 parametersΔρmin = 2.42 e Å3
4 restraintsAbsolute structure: Flack (1983), 7 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (10)
Crystal data top
C6H5IO3S·C4H9NO·H2OV = 1457.4 (5) Å3
Mr = 389.21Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.173 (3) ŵ = 2.35 mm1
b = 7.7480 (15) ÅT = 294 K
c = 13.272 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1096 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.539, Tmax = 0.7993 standard reflections every 120 min
1490 measured reflections intensity decay: none
1490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162Δρmax = 1.53 e Å3
S = 1.07Δρmin = 2.42 e Å3
1490 reflectionsAbsolute structure: Flack (1983), 7 Friedel pairs
172 parametersAbsolute structure parameter: 0.13 (10)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.20688 (5)0.25040 (11)0.7328 (2)0.0505 (3)
S0.1876 (2)0.9056 (4)1.0531 (3)0.0438 (8)
O1W0.9586 (8)0.1582 (19)0.0789 (10)0.077 (4)
H1WA0.914 (10)0.084 (19)0.065 (17)0.093*
H1WB1.023 (7)0.13 (2)0.082 (15)0.093*
O10.1588 (10)0.8396 (14)1.1505 (8)0.076 (4)
O20.2802 (7)0.9782 (15)1.0512 (14)0.094 (5)
H2A0.27681.08481.06590.113*
O30.1189 (8)1.0230 (11)1.0115 (8)0.053 (2)
O40.0108 (7)0.6431 (14)0.7131 (8)0.060 (3)
N10.0502 (9)0.597 (2)0.8736 (12)0.070 (4)
C10.1840 (9)0.4229 (16)0.9376 (10)0.041 (3)
H1B0.17560.31100.96130.050*
C20.1806 (9)0.5632 (16)1.0022 (10)0.043 (3)
H2B0.17090.54501.07060.051*
C30.1912 (8)0.7263 (14)0.9674 (11)0.034 (3)
C40.2059 (8)0.7609 (14)0.8682 (12)0.038 (3)
H4A0.21320.87410.84610.046*
C50.2100 (8)0.6222 (17)0.7992 (10)0.044 (3)
H5A0.21880.64120.73060.053*
C60.2002 (8)0.4547 (15)0.8381 (10)0.038 (3)
C70.0714 (13)0.648 (3)0.9756 (12)0.078 (5)
H7A0.11760.73860.97480.117*
H7B0.01490.68901.00760.117*
H7C0.09560.55091.01210.117*
C80.0515 (12)0.407 (2)0.8500 (15)0.073 (5)
H8A0.04900.39030.77840.110*
H8B0.10840.35620.87600.110*
H8C0.00200.35190.88080.110*
C90.0327 (13)0.897 (2)0.8184 (15)0.072 (5)
H9A0.02030.93000.85900.107*
H9B0.09010.92760.85220.107*
H9C0.02960.95480.75460.107*
C100.0305 (12)0.705 (2)0.8017 (15)0.062 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0651 (5)0.0364 (4)0.0499 (5)0.0024 (4)0.0001 (8)0.0136 (4)
S0.0544 (17)0.0296 (14)0.0473 (17)0.0041 (14)0.0096 (18)0.0142 (15)
O1W0.054 (6)0.103 (10)0.075 (9)0.002 (7)0.005 (6)0.025 (8)
O10.141 (11)0.047 (6)0.039 (6)0.028 (7)0.002 (6)0.003 (5)
O20.076 (8)0.059 (7)0.147 (13)0.004 (6)0.020 (9)0.062 (9)
O30.062 (6)0.035 (5)0.060 (6)0.008 (4)0.006 (5)0.011 (4)
O40.065 (6)0.060 (6)0.055 (7)0.006 (5)0.000 (5)0.001 (6)
N10.052 (8)0.083 (10)0.074 (10)0.008 (8)0.016 (7)0.003 (9)
C10.057 (7)0.024 (6)0.043 (7)0.009 (6)0.001 (6)0.000 (5)
C20.064 (8)0.034 (7)0.030 (6)0.003 (6)0.006 (6)0.003 (6)
C30.031 (6)0.025 (6)0.045 (7)0.004 (5)0.002 (5)0.006 (5)
C40.049 (7)0.017 (5)0.048 (8)0.001 (5)0.000 (6)0.003 (5)
C50.051 (8)0.042 (7)0.039 (7)0.006 (6)0.004 (6)0.003 (6)
C60.049 (7)0.024 (6)0.041 (7)0.002 (5)0.002 (6)0.006 (6)
C70.082 (12)0.101 (15)0.051 (10)0.005 (11)0.018 (9)0.004 (10)
C80.061 (10)0.070 (11)0.089 (13)0.011 (9)0.000 (9)0.008 (11)
C90.078 (12)0.079 (13)0.059 (10)0.013 (9)0.012 (9)0.017 (10)
C100.060 (10)0.060 (10)0.066 (11)0.002 (8)0.018 (9)0.009 (9)
Geometric parameters (Å, º) top
I1—C62.113 (12)C2—H2B0.9300
S—O21.429 (11)C3—C41.36 (2)
S—O31.441 (10)C4—C51.413 (18)
S—O11.449 (12)C4—H4A0.9300
S—C31.796 (12)C5—C61.404 (18)
O1W—H1WA0.88 (9)C5—H5A0.9300
O1W—H1WB0.94 (9)C7—H7A0.9600
O2—H2A0.8500C7—H7B0.9600
O4—C101.30 (2)C7—H7C0.9600
N1—C101.30 (2)C8—H8A0.9600
N1—C71.44 (2)C8—H8B0.9600
N1—C81.51 (2)C8—H8C0.9600
C1—C61.363 (19)C9—C101.50 (2)
C1—C21.386 (17)C9—H9A0.9600
C1—H1B0.9300C9—H9B0.9600
C2—C31.354 (17)C9—H9C0.9600
O2—S—O3111.4 (8)C4—C5—H5A121.3
O2—S—O1114.4 (9)C1—C6—C5122.7 (12)
O3—S—O1112.0 (7)C1—C6—I1120.8 (9)
O2—S—C3105.5 (6)C5—C6—I1116.4 (9)
O3—S—C3105.3 (6)N1—C7—H7A109.5
O1—S—C3107.5 (7)N1—C7—H7B109.5
H1WA—O1W—H1WB125 (10)H7A—C7—H7B109.5
S—O2—H2A109.0N1—C7—H7C109.5
C10—N1—C7123.8 (18)H7A—C7—H7C109.5
C10—N1—C8118.8 (16)H7B—C7—H7C109.5
C7—N1—C8117.5 (17)N1—C8—H8A109.5
C6—C1—C2117.6 (12)N1—C8—H8B109.5
C6—C1—H1B121.2H8A—C8—H8B109.5
C2—C1—H1B121.2N1—C8—H8C109.5
C3—C2—C1121.2 (13)H8A—C8—H8C109.5
C3—C2—H2B119.4H8B—C8—H8C109.5
C1—C2—H2B119.4C10—C9—H9A109.5
C2—C3—C4122.1 (12)C10—C9—H9B109.5
C2—C3—S120.2 (11)H9A—C9—H9B109.5
C4—C3—S117.7 (9)C10—C9—H9C109.5
C3—C4—C5118.9 (11)H9A—C9—H9C109.5
C3—C4—H4A120.5H9B—C9—H9C109.5
C5—C4—H4A120.5O4—C10—N1118.1 (16)
C6—C5—C4117.5 (13)O4—C10—C9120.3 (16)
C6—C5—H5A121.3N1—C10—C9121.7 (19)
C6—C1—C2—C31 (2)S—C3—C4—C5179.4 (8)
C1—C2—C3—C40 (2)C3—C4—C5—C61.2 (17)
C1—C2—C3—S179.4 (10)C2—C1—C6—C52 (2)
O2—S—C3—C2114.1 (12)C2—C1—C6—I1180.0 (9)
O3—S—C3—C2127.9 (11)C4—C5—C6—C12.3 (18)
O1—S—C3—C28.3 (13)C4—C5—C6—I1179.9 (8)
O2—S—C3—C465.0 (13)C7—N1—C10—O4178.7 (14)
O3—S—C3—C452.9 (11)C8—N1—C10—O41 (2)
O1—S—C3—C4172.5 (10)C7—N1—C10—C93 (3)
C2—C3—C4—C50.3 (19)C8—N1—C10—C9176.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.87 (13)1.97 (15)2.765 (16)151 (14)
O1W—H1WB···O3ii0.94 (10)1.85 (15)2.657 (16)143 (17)
O2—H2A···I1iii0.852.573.208 (16)133
C1—H1B···O3iv0.932.463.378 (15)168
C2—H2B···O10.932.522.925 (17)106
C5—H5A···O1v0.932.553.192 (17)126
C8—H8A···O40.962.212.64 (2)106
C9—H9A···O30.962.563.48 (2)161
Symmetry codes: (i) x+1/2, y+1, z1; (ii) x+1, y1, z1; (iii) x+1/2, y+1, z+1/2; (iv) x, y1, z; (v) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC6H5IO3S·C4H9NO·H2O
Mr389.21
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)294
a, b, c (Å)14.173 (3), 7.7480 (15), 13.272 (3)
V3)1457.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.539, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
1490, 1490, 1096
Rint0.000
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.162, 1.07
No. of reflections1490
No. of parameters172
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.53, 2.42
Absolute structureFlack (1983), 7 Friedel pairs
Absolute structure parameter0.13 (10)

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.87 (13)1.97 (15)2.765 (16)151 (14)
O1W—H1WB···O3ii0.94 (10)1.85 (15)2.657 (16)143 (17)
O2—H2A···I1iii0.85002.57003.208 (16)133.00
C1—H1B···O3iv0.93002.46003.378 (15)168.00
C2—H2B···O10.93002.52002.925 (17)106.00
C5—H5A···O1v0.93002.55003.192 (17)126.00
C8—H8A···O40.96002.21002.64 (2)106.00
C9—H9A···O30.96002.56003.48 (2)161.00
Symmetry codes: (i) x+1/2, y+1, z1; (ii) x+1, y1, z1; (iii) x+1/2, y+1, z+1/2; (iv) x, y1, z; (v) x+1/2, y, z1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. S., Chi, C. Y., Wang, X. H., Li, J., Zhao, X. J. & Wang, F. S. (2000). Synth. Commun. 30, 4293–4298.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds