organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­phenyl-2,2′-diyl di­acetate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: cj1908@126.com

(Received 27 October 2008; accepted 28 October 2008; online 8 November 2008)

In the title compound, C16H14O4, a derivative of 2,2′-biphenol, the benzene rings are oriented at a dihedral angle of 58.32 (3)°.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O4

  • Mr = 270.27

  • Monoclinic, P 21 /n

  • a = 8.8380 (18) Å

  • b = 18.204 (4) Å

  • c = 8.9620 (18) Å

  • β = 108.75 (3)°

  • V = 1365.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.972, Tmax = 0.991

  • 2643 measured reflections

  • 2478 independent reflections

  • 1645 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.156

  • S = 1.00

  • 2478 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some derivatives of andrographolide are important chemical materials. We report herein the crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C3-C8) and B (C9-C14) are, of course, planar and the dihedral angle between them is A/B = 58.32 (3)°.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2,2'-biphenol (10 g) was dissolved in acetic anhydride (50 ml) at room temperature. After the reaction completed, it was extracted with ethyl acetate, washed with saturated salt water and dryed with sodium sulfate. The product was filtrated, and the organic layer was concentrated. Crystals suitable for X-ray analysis were obtained from ethyl acetate (10 ml) at room temperature.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level.
Biphenyl-2,2'-diyl diacetate top
Crystal data top
C16H14O4F(000) = 568
Mr = 270.27Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.8380 (18) Åθ = 9–14°
b = 18.204 (4) ŵ = 0.10 mm1
c = 8.9620 (18) ÅT = 294 K
β = 108.75 (3)°Block, colorless
V = 1365.3 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1645 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.972, Tmax = 0.991l = 1010
2643 measured reflections3 standard reflections every 120 min
2478 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.04P)2 + 2.02P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2478 reflectionsΔρmax = 0.23 e Å3
184 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (3)
Crystal data top
C16H14O4V = 1365.3 (5) Å3
Mr = 270.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8380 (18) ŵ = 0.10 mm1
b = 18.204 (4) ÅT = 294 K
c = 8.9620 (18) Å0.30 × 0.20 × 0.10 mm
β = 108.75 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1645 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.972, Tmax = 0.9913 standard reflections every 120 min
2643 measured reflections intensity decay: 1%
2478 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2478 reflectionsΔρmin = 0.27 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0543 (3)0.18629 (18)0.4765 (3)0.0742 (8)
O20.0736 (3)0.22040 (12)0.7226 (3)0.0486 (6)
O30.2528 (3)0.08431 (13)0.7691 (2)0.0468 (6)
O40.1896 (4)0.03274 (15)0.7923 (3)0.0762 (9)
C10.2647 (5)0.2666 (2)0.6182 (5)0.0750 (13)
H1A0.28740.27190.52090.113*
H1B0.35390.24370.69520.113*
H1C0.24630.31420.65530.113*
C20.1200 (5)0.2203 (2)0.5920 (5)0.0544 (9)
C30.0585 (4)0.17726 (18)0.7219 (4)0.0438 (8)
C40.2080 (4)0.1915 (2)0.6172 (4)0.0576 (10)
H4A0.22170.22690.53920.069*
C50.3376 (4)0.1522 (2)0.6297 (5)0.0649 (11)
H5A0.43910.16130.55960.078*
C60.3171 (5)0.1001 (2)0.7448 (5)0.0656 (11)
H6A0.40470.07380.75200.079*
C70.1664 (4)0.0864 (2)0.8507 (4)0.0522 (9)
H7A0.15410.05110.92870.063*
C80.0327 (4)0.12500 (18)0.8416 (4)0.0406 (8)
C90.1255 (4)0.11569 (17)0.9635 (4)0.0395 (7)
C100.1422 (4)0.12691 (18)1.1210 (4)0.0466 (8)
H10A0.05250.13711.15020.056*
C110.2908 (4)0.1231 (2)1.2353 (4)0.0546 (9)
H11A0.30030.13211.34010.065*
C120.4247 (4)0.1062 (2)1.1957 (4)0.0547 (9)
H12A0.52420.10391.27320.066*
C130.4108 (4)0.09252 (19)1.0405 (4)0.0512 (9)
H13A0.50050.08061.01260.061*
C140.2620 (4)0.09669 (17)0.9267 (4)0.0418 (8)
C150.2136 (4)0.0154 (2)0.7134 (4)0.0475 (8)
C160.2087 (5)0.0091 (2)0.5468 (4)0.0636 (11)
H16A0.17460.03950.50880.095*
H16B0.31340.01800.54000.095*
H16C0.13510.04450.48390.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0705 (19)0.099 (2)0.0555 (17)0.0022 (17)0.0229 (14)0.0038 (16)
O20.0470 (13)0.0506 (14)0.0484 (13)0.0043 (11)0.0156 (11)0.0034 (11)
O30.0520 (14)0.0505 (14)0.0426 (13)0.0022 (11)0.0217 (11)0.0004 (11)
O40.117 (3)0.0578 (17)0.0618 (17)0.0175 (17)0.0403 (17)0.0039 (14)
C10.069 (3)0.081 (3)0.083 (3)0.009 (2)0.034 (2)0.013 (2)
C20.056 (2)0.056 (2)0.050 (2)0.0067 (18)0.0175 (18)0.0116 (18)
C30.0397 (18)0.0448 (19)0.0473 (19)0.0003 (15)0.0147 (15)0.0042 (15)
C40.054 (2)0.063 (2)0.051 (2)0.0104 (19)0.0100 (18)0.0078 (18)
C50.040 (2)0.085 (3)0.064 (3)0.009 (2)0.0099 (18)0.016 (2)
C60.047 (2)0.085 (3)0.071 (3)0.012 (2)0.026 (2)0.025 (2)
C70.048 (2)0.060 (2)0.054 (2)0.0084 (17)0.0233 (17)0.0084 (17)
C80.0348 (17)0.0478 (19)0.0421 (18)0.0007 (14)0.0163 (14)0.0056 (15)
C90.0432 (18)0.0389 (18)0.0394 (17)0.0009 (14)0.0172 (14)0.0023 (14)
C100.0465 (19)0.053 (2)0.0437 (19)0.0001 (16)0.0189 (16)0.0018 (15)
C110.064 (2)0.060 (2)0.0405 (19)0.0014 (19)0.0183 (18)0.0020 (17)
C120.046 (2)0.063 (2)0.050 (2)0.0075 (17)0.0078 (17)0.0027 (17)
C130.0414 (19)0.059 (2)0.055 (2)0.0038 (16)0.0175 (16)0.0047 (17)
C140.0463 (19)0.0433 (18)0.0383 (17)0.0032 (15)0.0168 (15)0.0020 (14)
C150.0423 (19)0.054 (2)0.048 (2)0.0024 (16)0.0171 (16)0.0055 (17)
C160.072 (3)0.077 (3)0.047 (2)0.010 (2)0.0257 (19)0.0065 (19)
Geometric parameters (Å, º) top
O1—C21.185 (4)C7—C81.400 (4)
O2—C21.359 (4)C7—H7A0.9300
O2—C31.406 (4)C8—C91.482 (4)
O3—C151.353 (4)C9—C101.386 (4)
O3—C141.406 (4)C9—C141.393 (4)
O4—C151.187 (4)C10—C111.383 (5)
C1—C21.487 (5)C10—H10A0.9300
C1—H1A0.9600C11—C121.376 (5)
C1—H1B0.9600C11—H11A0.9300
C1—H1C0.9600C12—C131.379 (5)
C3—C41.377 (5)C12—H12A0.9300
C3—C81.396 (4)C13—C141.384 (5)
C4—C51.385 (6)C13—H13A0.9300
C4—H4A0.9300C15—C161.484 (5)
C5—C61.370 (6)C16—H16A0.9600
C5—H5A0.9300C16—H16B0.9600
C6—C71.387 (5)C16—H16C0.9600
C6—H6A0.9300
C2—O2—C3118.4 (3)C7—C8—C9120.9 (3)
C15—O3—C14116.4 (3)C10—C9—C14117.4 (3)
C2—C1—H1A109.5C10—C9—C8120.0 (3)
C2—C1—H1B109.5C14—C9—C8122.5 (3)
H1A—C1—H1B109.5C11—C10—C9120.8 (3)
C2—C1—H1C109.5C11—C10—H10A119.6
H1A—C1—H1C109.5C9—C10—H10A119.6
H1B—C1—H1C109.5C12—C11—C10120.7 (3)
O1—C2—O2123.7 (4)C12—C11—H11A119.7
O1—C2—C1126.1 (4)C10—C11—H11A119.7
O2—C2—C1110.2 (3)C11—C12—C13119.7 (3)
C4—C3—C8122.4 (3)C11—C12—H12A120.1
C4—C3—O2120.8 (3)C13—C12—H12A120.1
C8—C3—O2116.6 (3)C12—C13—C14119.3 (3)
C3—C4—C5119.0 (4)C12—C13—H13A120.4
C3—C4—H4A120.5C14—C13—H13A120.4
C5—C4—H4A120.5C13—C14—C9122.0 (3)
C6—C5—C4120.4 (4)C13—C14—O3117.8 (3)
C6—C5—H5A119.8C9—C14—O3120.2 (3)
C4—C5—H5A119.8O4—C15—O3122.6 (3)
C5—C6—C7120.3 (4)O4—C15—C16126.0 (4)
C5—C6—H6A119.8O3—C15—C16111.4 (3)
C7—C6—H6A119.8C15—C16—H16A109.5
C6—C7—C8120.8 (4)C15—C16—H16B109.5
C6—C7—H7A119.6H16A—C16—H16B109.5
C8—C7—H7A119.6C15—C16—H16C109.5
C3—C8—C7117.0 (3)H16A—C16—H16C109.5
C3—C8—C9121.8 (3)H16B—C16—H16C109.5
C3—O2—C2—O10.7 (5)C3—C8—C9—C1460.2 (4)
C3—O2—C2—C1177.8 (3)C7—C8—C9—C14126.0 (3)
C2—O2—C3—C463.2 (4)C14—C9—C10—C113.4 (5)
C2—O2—C3—C8122.9 (3)C8—C9—C10—C11175.8 (3)
C8—C3—C4—C50.5 (5)C9—C10—C11—C121.8 (5)
O2—C3—C4—C5174.1 (3)C10—C11—C12—C130.2 (6)
C3—C4—C5—C60.1 (6)C11—C12—C13—C140.5 (5)
C4—C5—C6—C70.4 (6)C12—C13—C14—C91.2 (5)
C5—C6—C7—C80.4 (6)C12—C13—C14—O3178.4 (3)
C4—C3—C8—C70.6 (5)C10—C9—C14—C133.1 (5)
O2—C3—C8—C7174.3 (3)C8—C9—C14—C13176.0 (3)
C4—C3—C8—C9173.5 (3)C10—C9—C14—O3179.8 (3)
O2—C3—C8—C90.3 (4)C8—C9—C14—O31.1 (5)
C6—C7—C8—C30.1 (5)C15—O3—C14—C1396.1 (4)
C6—C7—C8—C9174.0 (3)C15—O3—C14—C986.7 (4)
C3—C8—C9—C10118.9 (3)C14—O3—C15—O40.8 (5)
C7—C8—C9—C1054.9 (4)C14—O3—C15—C16179.6 (3)

Experimental details

Crystal data
Chemical formulaC16H14O4
Mr270.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.8380 (18), 18.204 (4), 8.9620 (18)
β (°) 108.75 (3)
V3)1365.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2643, 2478, 1645
Rint0.026
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.00
No. of reflections2478
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds