organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl-1-naphth­yl)ethanone

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hyh@njut.edu.cn

(Received 28 October 2008; accepted 31 October 2008; online 13 November 2008)

In the mol­ecule of the title compound, C13H12O, the two aromatic rings are oriented at a dihedral angle of 2.90 (3)°. An intra­molecular C—H⋯O hydrogen bond results in the formation of a non-planar six-membered ring, which adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related structures, see: Dixon et al. (1981[Dixon, E. A., Fischer, A. & Robinson, F. P. (1981). Can. J. Chem. 59, 2629-2641.]); Grummitt & Buck (1943[Grummitt, O. & Buck, A. C. (1943). J. Am. Chem. Soc. 65, 295-296.]); Merritt & Braun (1950[Merritt, C. & Braun, C. E. (1950). Org. Synth. 30, 1-2.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O

  • Mr = 184.23

  • Orthorhombic, P b c a

  • a = 15.449 (3) Å

  • b = 7.8290 (16) Å

  • c = 16.755 (3) Å

  • V = 2026.5 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 1932 measured reflections

  • 1846 independent reflections

  • 905 reflections with I > 2σ(I)

  • Rint = 0.000

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.155

  • S = 1.01

  • 1846 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O 0.93 2.30 2.920 (4) 124
C13—H13C⋯Oi 0.96 2.55 3.296 (4) 135
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a dye and plastic processing aid of intermediate, 1,4-naphthalenedicarboxylic acid. As part of our ongoing studies in this area, we report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C3-C8) and B (C1-C3/C8-C10) are, of course, planar and the dihedral angle between them is A/B = 2.90 (3)°. The intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a nonplanar six-membered ring C (C2-C4/C12/O/H2A) adopting envelope conformation with O atom displaced by -0.533 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Dixon et al. (1981); Grummitt & Buck (1943); Merritt & Braun (1950). For bond-length data, see: Allen et al. (1987).

Experimental top

In a three-necked flask, naphthalene (256.0 g, 2.00 mol), paraformaldehyde (110.0 g, 1.22 mol), glacial acetic acid (260 ml), concentrated hydrochloric acid (362 ml) and phosphoric acid (165 ml, 85%) are heated with efficient stirring in a water bath at 353-358 K for 6 h. The product is washed two times with cold water (1 liter), a solution of potassium carbonate (20.0 g) in cold water (500 ml), and finally with cold water (500 ml). Ether (200 ml) is added to the oil layer and the solution is given a preliminary drying with anhydrous potassium carbonate (10.0 g) for 1 h. The lower aqueous layer is separated and the ether solution again dried with potassium carbonate (20.0 g) for 8-10 h. The ether solution is distilled first at atmospheric pressure to remove the ether, and then followed by distillation under reduced pressure to obtain 1-chloromethylnaphthalene. In a three-necked flask, magnesium (63.2 g), absolute ether (100 ml), a crystal of iodine, a solution of 1-chloromethylnaphthalene (150.0 g, 0.85 mol) in absolute ether (750 ml) and absolute ether (1080 ml) are mixed, and the ether solution of the chloride is added to the mixture in 5 h, and then stirred and heated at reflux for an additional 1 h to obtain 1-methylnaphthalene. The yield was 88-92% (Grummitt & Buck, 1943). Acetyl chloride (39.3 g, 0.48 mol, 38 ml) is added over 45 min to a stirred mixture of 1-methylnaphthalene (Aldrich) (67.0 g, 0.48 mol), dry dichloromethane (340 ml) and finely ground anhydrous aluminium chloride (76.0 g, 0.57 mol) at 273 K. After the addition is completed, the mixture is stirred at ambient temperature for 4 h, and then heated under reflux for 2.5 h (Dixon et al., 1981). The reaction solution is washed with hydrochloric acid many times. The aqueous phase followed by distillation under reduced pressure gave the title compound (yield; 71%) (Merritt & Braun, 1950). Crystals suitable for X-ray analysis are obtained by slow evaporation of an petroleum ether solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom- numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
1-(4-Methyl-1-naphthyl)ethanone top
Crystal data top
C13H12OF(000) = 784
Mr = 184.23Dx = 1.208 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 15.449 (3) Åθ = 9–13°
b = 7.8290 (16) ŵ = 0.08 mm1
c = 16.755 (3) ÅT = 294 K
V = 2026.5 (7) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
905 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.978, Tmax = 0.993l = 020
1932 measured reflections3 standard reflections every 120 min
1846 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
1846 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H12OV = 2026.5 (7) Å3
Mr = 184.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.449 (3) ŵ = 0.08 mm1
b = 7.8290 (16) ÅT = 294 K
c = 16.755 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
905 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.978, Tmax = 0.9933 standard reflections every 120 min
1932 measured reflections intensity decay: none
1846 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
1846 reflectionsΔρmin = 0.16 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.72633 (18)0.0605 (3)0.52877 (14)0.1022 (9)
C10.4927 (2)0.1819 (5)0.5918 (2)0.0830 (11)
H1A0.45900.18270.54570.100*
C20.5750 (2)0.1221 (4)0.58895 (18)0.0665 (9)
H2A0.59730.08290.54070.080*
C30.62766 (19)0.1181 (3)0.65824 (17)0.0498 (7)
C40.7163 (2)0.0658 (3)0.65707 (18)0.0573 (8)
C50.7619 (2)0.0651 (4)0.7276 (2)0.0679 (9)
H5A0.81980.03260.72720.082*
C60.7234 (2)0.1121 (4)0.79985 (19)0.0710 (10)
H6A0.75540.10340.84670.085*
C70.6410 (2)0.1698 (4)0.80342 (17)0.0611 (8)
C80.59134 (18)0.1753 (3)0.73121 (18)0.0531 (7)
C90.5063 (2)0.2390 (5)0.7314 (2)0.0731 (10)
H9A0.48250.27940.77870.088*
C100.4583 (2)0.2424 (4)0.6633 (3)0.0829 (11)
H10A0.40220.28540.66450.100*
C110.6043 (3)0.2281 (5)0.88156 (17)0.0941 (13)
H11A0.64740.21630.92250.141*
H11B0.55480.15970.89480.141*
H11C0.58730.34570.87750.141*
C120.7628 (3)0.0157 (4)0.5827 (2)0.0733 (10)
C130.8571 (2)0.0651 (4)0.5755 (2)0.0961 (13)
H13A0.87940.02590.52530.144*
H13B0.88930.01370.61830.144*
H13C0.86250.18710.57860.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.127 (2)0.098 (2)0.0814 (16)0.0038 (18)0.0255 (17)0.0239 (15)
C10.081 (3)0.079 (3)0.090 (3)0.011 (2)0.028 (2)0.017 (2)
C20.078 (2)0.061 (2)0.061 (2)0.0079 (19)0.0101 (18)0.0077 (16)
C30.0557 (18)0.0421 (16)0.0516 (16)0.0036 (14)0.0025 (15)0.0035 (14)
C40.066 (2)0.0455 (17)0.0601 (18)0.0005 (16)0.0093 (18)0.0039 (15)
C50.063 (2)0.060 (2)0.081 (2)0.0066 (17)0.005 (2)0.0095 (18)
C60.079 (3)0.074 (2)0.061 (2)0.000 (2)0.0125 (18)0.0105 (17)
C70.073 (2)0.0565 (19)0.0535 (18)0.0008 (18)0.0024 (18)0.0037 (15)
C80.0516 (18)0.0464 (16)0.0614 (18)0.0009 (15)0.0018 (16)0.0054 (14)
C90.066 (2)0.074 (2)0.079 (2)0.005 (2)0.010 (2)0.0109 (19)
C100.053 (2)0.072 (2)0.124 (3)0.0011 (19)0.000 (2)0.021 (2)
C110.122 (3)0.101 (3)0.059 (2)0.013 (3)0.011 (2)0.004 (2)
C120.095 (3)0.0495 (19)0.076 (2)0.0060 (19)0.021 (2)0.0012 (18)
C130.079 (3)0.081 (3)0.128 (3)0.007 (2)0.046 (2)0.004 (2)
Geometric parameters (Å, º) top
O—C121.220 (4)C7—C81.434 (4)
C1—C21.357 (4)C7—C111.498 (4)
C1—C101.394 (5)C8—C91.405 (4)
C1—H1A0.9300C9—C101.360 (4)
C2—C31.418 (4)C9—H9A0.9300
C2—H2A0.9300C10—H10A0.9300
C3—C81.418 (4)C11—H11A0.9600
C3—C41.430 (4)C11—H11B0.9600
C4—C51.376 (4)C11—H11C0.9600
C4—C121.491 (4)C12—C131.513 (5)
C5—C61.398 (4)C13—H13A0.9600
C5—H5A0.9300C13—H13B0.9600
C6—C71.352 (4)C13—H13C0.9600
C6—H6A0.9300
C2—C1—C10120.3 (3)C3—C8—C7120.4 (3)
C2—C1—H1A119.9C10—C9—C8121.0 (3)
C10—C1—H1A119.9C10—C9—H9A119.5
C1—C2—C3121.1 (3)C8—C9—H9A119.5
C1—C2—H2A119.4C9—C10—C1120.5 (3)
C3—C2—H2A119.4C9—C10—H10A119.8
C8—C3—C2118.2 (3)C1—C10—H10A119.8
C8—C3—C4118.8 (3)C7—C11—H11A109.5
C2—C3—C4123.0 (3)C7—C11—H11B109.5
C5—C4—C3118.7 (3)H11A—C11—H11B109.5
C5—C4—C12118.1 (3)C7—C11—H11C109.5
C3—C4—C12123.2 (3)H11A—C11—H11C109.5
C4—C5—C6121.7 (3)H11B—C11—H11C109.5
C4—C5—H5A119.2O—C12—C4121.7 (3)
C6—C5—H5A119.2O—C12—C13120.8 (3)
C7—C6—C5121.8 (3)C4—C12—C13117.5 (3)
C7—C6—H6A119.1C12—C13—H13A109.5
C5—C6—H6A119.1C12—C13—H13B109.5
C6—C7—C8118.5 (3)H13A—C13—H13B109.5
C6—C7—C11119.8 (3)C12—C13—H13C109.5
C8—C7—C11121.7 (3)H13A—C13—H13C109.5
C9—C8—C3118.9 (3)H13B—C13—H13C109.5
C9—C8—C7120.6 (3)
C10—C1—C2—C30.5 (5)C2—C3—C8—C7178.4 (3)
C1—C2—C3—C81.3 (4)C4—C3—C8—C74.1 (4)
C1—C2—C3—C4176.1 (3)C6—C7—C8—C9178.1 (3)
C8—C3—C4—C53.1 (4)C11—C7—C8—C91.1 (5)
C2—C3—C4—C5179.6 (3)C6—C7—C8—C31.2 (4)
C8—C3—C4—C12175.4 (3)C11—C7—C8—C3179.5 (3)
C2—C3—C4—C122.0 (4)C3—C8—C9—C101.6 (5)
C3—C4—C5—C60.8 (5)C7—C8—C9—C10179.1 (3)
C12—C4—C5—C6179.3 (3)C8—C9—C10—C10.2 (5)
C4—C5—C6—C73.9 (5)C2—C1—C10—C91.3 (5)
C5—C6—C7—C82.7 (5)C5—C4—C12—O146.1 (3)
C5—C6—C7—C11176.5 (3)C3—C4—C12—O35.4 (5)
C2—C3—C8—C92.3 (4)C5—C4—C12—C1334.8 (4)
C4—C3—C8—C9175.2 (3)C3—C4—C12—C13143.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O0.932.302.920 (4)124
C13—H13C···Oi0.962.553.296 (4)135
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H12O
Mr184.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)15.449 (3), 7.8290 (16), 16.755 (3)
V3)2026.5 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
1932, 1846, 905
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.01
No. of reflections1846
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O0.932.302.920 (4)124.00
C13—H13C···Oi0.962.553.296 (4)135.00
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and the `863' project (2007AA02Z211) of the Ministry of Science and Technology of P. R. China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDixon, E. A., Fischer, A. & Robinson, F. P. (1981). Can. J. Chem. 59, 2629–2641.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGrummitt, O. & Buck, A. C. (1943). J. Am. Chem. Soc. 65, 295–296.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMerritt, C. & Braun, C. E. (1950). Org. Synth. 30, 1–2.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds