organic compounds
3-(3-Fluorobenzyl)-1H-isochromen-1-one
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: nasim_hasan_rama@hotmail.com
The 16H11FO2, contains two independent molecules. The isochromene ring systems are planar and are oriented with respect to the fluorobenzene rings at dihedral angles of 87.15 (3) and 87.85 (3)° in the two molecules.
of the title compound, CRelated literature
For general background, see: Barry (1964); Hill (1986); Canedo et al. (1997); Whyte et al. (1996). For a related structure, see: Abid et al. (2006). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808035575/hk2565sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035575/hk2565Isup2.hkl
A mixture of 3-fluorophenylacetic acid (5 g, 32 mmol) and thionyl chloride (2.94 ml, 34 mmol) was heated for 30 min in the presence of a few drops of DMF under reflux at 343 K to give 2-(3-fluorophenyl)acetyl chloride. Completion of reaction was indicated by the disappearance of gas evolution. Removal of excess thionyl chloride was carried out under reduced pressure to afford 2-(3-fluorophenyl)acetyl chloride. Homophthalic acid (1.3 g, 7.2 mmol) was then added and the solution was refluxed for 4 h at 473 K with stirring. The reaction mixture was extracted with ethyl acetate (3 × 100 ml), and an aqueous solution of sodium carbonate (5%, 200 ml) was added to remove the unreacted homophthalic acid. The organic layer was separated, concentrated and chromatographed on silica gel using petroleum ether (313-353 K fractions) as
to afford the title compound (yield; 72%, m.p. 447-448 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Hooft, 1998); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. |
C16H11FO2 | Z = 4 |
Mr = 254.25 | F(000) = 528 |
Triclinic, P1 | Dx = 1.392 Mg m−3 |
Hall symbol: -P 1 | Melting point: 447(1) K |
a = 7.0130 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7570 (9) Å | Cell parameters from 19831 reflections |
c = 15.8070 (7) Å | θ = 1–27.5° |
α = 97.515 (6)° | µ = 0.10 mm−1 |
β = 100.520 (4)° | T = 150 K |
γ = 105.397 (7)° | Block, colorless |
V = 1213.12 (16) Å3 | 0.38 × 0.24 × 0.22 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 5458 independent reflections |
Radiation source: fine-focus sealed tube | 3741 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.103 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 1.3° |
ϕ and ω scans | h = −9→9 |
Absorption correction: gaussian (Coppens, 1970) | k = −15→15 |
Tmin = 0.925, Tmax = 0.961 | l = −20→20 |
19724 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.218 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0736P)2 + 0.9938P] where P = (Fo2 + 2Fc2)/3 |
5458 reflections | (Δ/σ)max < 0.001 |
343 parameters | Δρmax = 1.11 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C16H11FO2 | γ = 105.397 (7)° |
Mr = 254.25 | V = 1213.12 (16) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.0130 (7) Å | Mo Kα radiation |
b = 11.7570 (9) Å | µ = 0.10 mm−1 |
c = 15.8070 (7) Å | T = 150 K |
α = 97.515 (6)° | 0.38 × 0.24 × 0.22 mm |
β = 100.520 (4)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 5458 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 3741 reflections with I > 2σ(I) |
Tmin = 0.925, Tmax = 0.961 | Rint = 0.103 |
19724 measured reflections |
R[F2 > 2σ(F2)] = 0.074 | 0 restraints |
wR(F2) = 0.218 | H-atom parameters constrained |
S = 1.15 | Δρmax = 1.11 e Å−3 |
5458 reflections | Δρmin = −0.33 e Å−3 |
343 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1A | −0.3150 (4) | −0.1110 (3) | 0.3167 (2) | 0.1171 (11) | |
O1A | 0.3057 (4) | 0.66409 (18) | 0.51835 (14) | 0.0554 (6) | |
O2A | 0.2277 (3) | 0.46688 (17) | 0.49561 (12) | 0.0445 (5) | |
C1A | 0.2626 (5) | 0.5733 (2) | 0.46489 (18) | 0.0396 (6) | |
C2A | 0.1748 (4) | 0.3568 (2) | 0.44071 (18) | 0.0366 (6) | |
C3A | 0.1539 (4) | 0.3464 (2) | 0.35504 (17) | 0.0327 (6) | |
H3A | 0.1165 | 0.2708 | 0.3196 | 0.039* | |
C4A | 0.1886 (4) | 0.4520 (2) | 0.31613 (16) | 0.0307 (5) | |
C5A | 0.1696 (4) | 0.4466 (3) | 0.22617 (17) | 0.0376 (6) | |
H5A | 0.1304 | 0.3727 | 0.1884 | 0.045* | |
C6A | 0.2087 (5) | 0.5508 (3) | 0.19368 (19) | 0.0448 (7) | |
H6A | 0.1947 | 0.5469 | 0.1336 | 0.054* | |
C7A | 0.2686 (5) | 0.6617 (3) | 0.2486 (2) | 0.0494 (8) | |
H7A | 0.2961 | 0.7316 | 0.2255 | 0.059* | |
C8A | 0.2869 (5) | 0.6691 (3) | 0.3371 (2) | 0.0438 (7) | |
H8A | 0.3264 | 0.7436 | 0.3741 | 0.053* | |
C9A | 0.2464 (4) | 0.5642 (2) | 0.37126 (17) | 0.0336 (6) | |
C10A | 0.1492 (5) | 0.2591 (3) | 0.49354 (19) | 0.0477 (8) | |
H10AA | 0.0384 | 0.2597 | 0.5223 | 0.057* | |
H10AB | 0.2721 | 0.2754 | 0.5387 | 0.057* | |
C11A | 0.1064 (5) | 0.1367 (2) | 0.43876 (19) | 0.0415 (7) | |
C12A | −0.0899 (5) | 0.0666 (3) | 0.4031 (2) | 0.0500 (8) | |
H12A | −0.1986 | 0.0926 | 0.4142 | 0.060* | |
C13A | −0.1233 (6) | −0.0442 (3) | 0.3506 (2) | 0.0597 (9) | |
C14A | 0.0309 (6) | −0.0860 (3) | 0.3330 (2) | 0.0605 (9) | |
H14A | 0.0045 | −0.1603 | 0.2972 | 0.073* | |
C15A | 0.2262 (6) | −0.0157 (3) | 0.3690 (2) | 0.0582 (9) | |
H15A | 0.3335 | −0.0431 | 0.3576 | 0.070* | |
C16A | 0.2644 (5) | 0.0946 (3) | 0.4218 (2) | 0.0486 (8) | |
H16A | 0.3979 | 0.1410 | 0.4462 | 0.058* | |
F1B | 0.6734 (4) | 0.4452 (2) | 0.02309 (13) | 0.0755 (7) | |
O1B | −0.0906 (3) | 0.1067 (2) | 0.15717 (17) | 0.0560 (6) | |
O2B | 0.2406 (3) | 0.14988 (17) | 0.19855 (12) | 0.0379 (5) | |
C1B | 0.0550 (4) | 0.0724 (3) | 0.15393 (19) | 0.0377 (6) | |
C2B | 0.4190 (4) | 0.1206 (2) | 0.20150 (17) | 0.0338 (6) | |
C3B | 0.4207 (4) | 0.0158 (2) | 0.15905 (17) | 0.0362 (6) | |
H3B | 0.5434 | −0.0013 | 0.1613 | 0.043* | |
C4B | 0.2357 (4) | −0.0713 (2) | 0.10937 (16) | 0.0335 (6) | |
C5B | 0.2287 (5) | −0.1833 (3) | 0.06398 (18) | 0.0414 (7) | |
H5B | 0.3484 | −0.2037 | 0.0651 | 0.050* | |
C6B | 0.0472 (5) | −0.2627 (3) | 0.01779 (19) | 0.0479 (8) | |
H6B | 0.0445 | −0.3373 | −0.0115 | 0.057* | |
C7B | −0.1311 (5) | −0.2330 (3) | 0.0146 (2) | 0.0486 (8) | |
H7B | −0.2535 | −0.2871 | −0.0174 | 0.058* | |
C8B | −0.1287 (4) | −0.1243 (3) | 0.0585 (2) | 0.0448 (7) | |
H8B | −0.2490 | −0.1044 | 0.0564 | 0.054* | |
C9B | 0.0545 (4) | −0.0429 (2) | 0.10674 (17) | 0.0346 (6) | |
C10B | 0.5958 (4) | 0.2185 (3) | 0.25670 (17) | 0.0385 (6) | |
H10BA | 0.7166 | 0.1925 | 0.2602 | 0.046* | |
H10BB | 0.5740 | 0.2328 | 0.3155 | 0.046* | |
C11B | 0.6324 (4) | 0.3355 (2) | 0.22315 (17) | 0.0341 (6) | |
C12B | 0.6343 (4) | 0.3367 (3) | 0.13607 (18) | 0.0393 (6) | |
H12B | 0.6121 | 0.2656 | 0.0971 | 0.047* | |
C13B | 0.6700 (5) | 0.4442 (3) | 0.10830 (19) | 0.0452 (7) | |
C14B | 0.7068 (5) | 0.5520 (3) | 0.1630 (2) | 0.0512 (8) | |
H14B | 0.7312 | 0.6238 | 0.1423 | 0.061* | |
C15B | 0.7077 (5) | 0.5502 (3) | 0.2497 (2) | 0.0507 (8) | |
H15B | 0.7325 | 0.6218 | 0.2886 | 0.061* | |
C16B | 0.6707 (4) | 0.4437 (3) | 0.28008 (19) | 0.0418 (7) | |
H16B | 0.6724 | 0.4442 | 0.3391 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1A | 0.0800 (19) | 0.0779 (18) | 0.155 (3) | −0.0105 (14) | −0.0160 (18) | 0.0182 (18) |
O1A | 0.0836 (17) | 0.0300 (11) | 0.0420 (12) | 0.0070 (11) | 0.0081 (11) | −0.0009 (9) |
O2A | 0.0694 (14) | 0.0310 (10) | 0.0299 (10) | 0.0109 (9) | 0.0095 (9) | 0.0056 (8) |
C1A | 0.0471 (17) | 0.0285 (14) | 0.0389 (15) | 0.0074 (12) | 0.0048 (12) | 0.0061 (11) |
C2A | 0.0453 (16) | 0.0264 (13) | 0.0390 (14) | 0.0099 (11) | 0.0112 (12) | 0.0083 (11) |
C3A | 0.0368 (14) | 0.0248 (12) | 0.0353 (13) | 0.0085 (10) | 0.0060 (11) | 0.0055 (10) |
C4A | 0.0292 (13) | 0.0292 (13) | 0.0331 (13) | 0.0076 (10) | 0.0061 (10) | 0.0079 (10) |
C5A | 0.0428 (16) | 0.0361 (15) | 0.0323 (13) | 0.0111 (12) | 0.0054 (11) | 0.0072 (11) |
C6A | 0.0510 (18) | 0.0479 (17) | 0.0349 (14) | 0.0116 (14) | 0.0076 (12) | 0.0157 (13) |
C7A | 0.0557 (19) | 0.0398 (16) | 0.0495 (17) | 0.0071 (14) | 0.0049 (14) | 0.0221 (14) |
C8A | 0.0499 (17) | 0.0276 (14) | 0.0475 (16) | 0.0048 (12) | 0.0033 (13) | 0.0099 (12) |
C9A | 0.0333 (14) | 0.0295 (13) | 0.0348 (13) | 0.0070 (11) | 0.0029 (10) | 0.0066 (10) |
C10A | 0.071 (2) | 0.0397 (16) | 0.0385 (15) | 0.0171 (15) | 0.0179 (14) | 0.0174 (13) |
C11A | 0.0545 (18) | 0.0313 (14) | 0.0437 (15) | 0.0119 (13) | 0.0152 (13) | 0.0207 (12) |
C12A | 0.0550 (19) | 0.0431 (17) | 0.0571 (19) | 0.0150 (15) | 0.0140 (15) | 0.0250 (15) |
C13A | 0.059 (2) | 0.0387 (18) | 0.067 (2) | −0.0041 (16) | −0.0014 (17) | 0.0204 (16) |
C14A | 0.087 (3) | 0.0299 (16) | 0.062 (2) | 0.0090 (17) | 0.0189 (19) | 0.0120 (15) |
C15A | 0.073 (2) | 0.0362 (17) | 0.075 (2) | 0.0171 (16) | 0.0324 (19) | 0.0210 (16) |
C16A | 0.0538 (19) | 0.0339 (15) | 0.0593 (19) | 0.0079 (14) | 0.0165 (15) | 0.0185 (14) |
F1B | 0.1003 (18) | 0.0857 (16) | 0.0531 (12) | 0.0332 (14) | 0.0296 (11) | 0.0283 (11) |
O1B | 0.0363 (12) | 0.0522 (13) | 0.0832 (17) | 0.0170 (10) | 0.0194 (11) | 0.0088 (12) |
O2B | 0.0337 (10) | 0.0353 (10) | 0.0443 (11) | 0.0099 (8) | 0.0113 (8) | 0.0032 (8) |
C1B | 0.0322 (14) | 0.0369 (15) | 0.0462 (15) | 0.0080 (12) | 0.0138 (12) | 0.0133 (12) |
C2B | 0.0331 (14) | 0.0374 (14) | 0.0325 (13) | 0.0106 (11) | 0.0095 (10) | 0.0089 (11) |
C3B | 0.0317 (14) | 0.0392 (15) | 0.0389 (14) | 0.0117 (11) | 0.0104 (11) | 0.0060 (11) |
C4B | 0.0355 (14) | 0.0353 (14) | 0.0306 (12) | 0.0092 (11) | 0.0100 (10) | 0.0091 (11) |
C5B | 0.0475 (17) | 0.0401 (16) | 0.0363 (14) | 0.0137 (13) | 0.0092 (12) | 0.0051 (12) |
C6B | 0.060 (2) | 0.0355 (15) | 0.0403 (16) | 0.0058 (14) | 0.0082 (14) | 0.0019 (12) |
C7B | 0.0432 (17) | 0.0437 (17) | 0.0461 (17) | −0.0032 (13) | 0.0020 (13) | 0.0082 (14) |
C8B | 0.0328 (15) | 0.0486 (18) | 0.0495 (17) | 0.0044 (13) | 0.0084 (12) | 0.0148 (14) |
C9B | 0.0343 (14) | 0.0355 (14) | 0.0347 (13) | 0.0070 (11) | 0.0105 (11) | 0.0126 (11) |
C10B | 0.0385 (15) | 0.0399 (15) | 0.0317 (13) | 0.0077 (12) | 0.0032 (11) | 0.0035 (11) |
C11B | 0.0252 (13) | 0.0374 (14) | 0.0348 (13) | 0.0043 (11) | 0.0050 (10) | 0.0032 (11) |
C12B | 0.0385 (15) | 0.0423 (16) | 0.0335 (14) | 0.0083 (12) | 0.0087 (11) | 0.0012 (12) |
C13B | 0.0427 (16) | 0.0563 (19) | 0.0384 (15) | 0.0133 (14) | 0.0125 (12) | 0.0137 (14) |
C14B | 0.0471 (18) | 0.0441 (18) | 0.065 (2) | 0.0102 (14) | 0.0188 (15) | 0.0183 (15) |
C15B | 0.0509 (18) | 0.0377 (16) | 0.0570 (19) | 0.0054 (14) | 0.0142 (15) | 0.0003 (14) |
C16B | 0.0384 (15) | 0.0439 (16) | 0.0353 (14) | 0.0045 (12) | 0.0060 (11) | 0.0000 (12) |
O1A—C1A | 1.202 (3) | O2B—C1B | 1.374 (3) |
O2A—C1A | 1.378 (3) | O2B—C2B | 1.378 (3) |
O2A—C2A | 1.378 (3) | C2B—C3B | 1.328 (4) |
C2A—C3A | 1.321 (4) | C2B—C10B | 1.486 (4) |
C2A—C10A | 1.498 (4) | C3B—H3B | 0.9299 |
C3A—H3A | 0.9301 | C4B—C5B | 1.398 (4) |
C4A—C3A | 1.440 (4) | C4B—C3B | 1.436 (4) |
C4A—C9A | 1.397 (4) | C5B—C6B | 1.370 (4) |
C5A—C4A | 1.395 (4) | C5B—H5B | 0.9300 |
C5A—C6A | 1.370 (4) | C6B—H6B | 0.9300 |
C5A—H5A | 0.9300 | C7B—C6B | 1.379 (5) |
C6A—C7A | 1.382 (4) | C7B—H7B | 0.9300 |
C6A—H6A | 0.9300 | C8B—C7B | 1.367 (4) |
C7A—H7A | 0.9300 | C8B—H8B | 0.9300 |
C8A—C7A | 1.370 (4) | C9B—C1B | 1.458 (4) |
C8A—H8A | 0.9300 | C9B—C4B | 1.393 (4) |
C9A—C1A | 1.451 (4) | C9B—C8B | 1.395 (4) |
C9A—C8A | 1.391 (4) | C10B—H10BA | 0.9700 |
C10A—H10AA | 0.9701 | C10B—H10BB | 0.9701 |
C10A—H10AB | 0.9700 | C11B—C12B | 1.381 (4) |
C11A—C10A | 1.504 (4) | C11B—C16B | 1.390 (4) |
C11A—C12A | 1.373 (5) | C11B—C10B | 1.513 (4) |
C11A—C16A | 1.383 (4) | C12B—H12B | 0.9300 |
C12A—C13A | 1.386 (5) | C13B—C12B | 1.368 (4) |
C12A—H12A | 0.9300 | C13B—C14B | 1.370 (4) |
C13A—F1A | 1.333 (4) | C14B—H14B | 0.9301 |
C14A—C13A | 1.359 (5) | C15B—C14B | 1.373 (5) |
C14A—C15A | 1.368 (5) | C15B—C16B | 1.377 (4) |
C14A—H14A | 0.9300 | C15B—H15B | 0.9299 |
C15A—H15A | 0.9300 | C16A—C15A | 1.379 (4) |
F1B—C13B | 1.353 (3) | C16A—H16A | 0.9300 |
O1B—C1B | 1.200 (3) | C16B—H16B | 0.9300 |
C2A—O2A—C1A | 122.3 (2) | C1B—O2B—C2B | 122.5 (2) |
O1A—C1A—O2A | 116.8 (3) | O1B—C1B—O2B | 116.7 (3) |
O1A—C1A—C9A | 126.6 (3) | O1B—C1B—C9B | 126.4 (3) |
O2A—C1A—C9A | 116.6 (2) | O2B—C1B—C9B | 116.9 (2) |
C3A—C2A—O2A | 122.1 (2) | C3B—C2B—O2B | 121.2 (2) |
C3A—C2A—C10A | 128.3 (2) | C3B—C2B—C10B | 127.3 (3) |
O2A—C2A—C10A | 109.6 (2) | O2B—C2B—C10B | 111.4 (2) |
C2A—C3A—C4A | 120.2 (2) | C2B—C3B—C4B | 120.9 (2) |
C2A—C3A—H3A | 120.1 | C2B—C3B—H3B | 119.6 |
C4A—C3A—H3A | 119.8 | C4B—C3B—H3B | 119.5 |
C5A—C4A—C9A | 119.0 (2) | C9B—C4B—C5B | 118.5 (3) |
C5A—C4A—C3A | 122.7 (2) | C9B—C4B—C3B | 118.2 (2) |
C9A—C4A—C3A | 118.3 (2) | C5B—C4B—C3B | 123.2 (2) |
C6A—C5A—C4A | 119.7 (3) | C6B—C5B—C4B | 120.5 (3) |
C6A—C5A—H5A | 120.1 | C6B—C5B—H5B | 119.9 |
C4A—C5A—H5A | 120.2 | C4B—C5B—H5B | 119.6 |
C5A—C6A—C7A | 121.1 (3) | C5B—C6B—C7B | 120.5 (3) |
C5A—C6A—H6A | 119.4 | C5B—C6B—H6B | 119.6 |
C7A—C6A—H6A | 119.4 | C7B—C6B—H6B | 119.9 |
C8A—C7A—C6A | 120.1 (3) | C8B—C7B—C6B | 120.2 (3) |
C8A—C7A—H7A | 119.9 | C8B—C7B—H7B | 119.8 |
C6A—C7A—H7A | 120.0 | C6B—C7B—H7B | 120.0 |
C7A—C8A—C9A | 119.6 (3) | C7B—C8B—C9B | 120.1 (3) |
C7A—C8A—H8A | 120.2 | C7B—C8B—H8B | 120.2 |
C9A—C8A—H8A | 120.2 | C9B—C8B—H8B | 119.8 |
C8A—C9A—C4A | 120.5 (2) | C4B—C9B—C8B | 120.2 (3) |
C8A—C9A—C1A | 119.0 (2) | C4B—C9B—C1B | 120.2 (2) |
C4A—C9A—C1A | 120.5 (2) | C8B—C9B—C1B | 119.6 (3) |
C2A—C10A—C11A | 112.7 (2) | C2B—C10B—C11B | 113.9 (2) |
C2A—C10A—H10AA | 109.2 | C2B—C10B—H10BA | 108.9 |
C11A—C10A—H10AA | 109.1 | C11B—C10B—H10BA | 108.8 |
C2A—C10A—H10AB | 108.9 | C2B—C10B—H10BB | 108.7 |
C11A—C10A—H10AB | 109.0 | C11B—C10B—H10BB | 108.7 |
H10AA—C10A—H10AB | 107.8 | H10BA—C10B—H10BB | 107.6 |
C12A—C11A—C16A | 119.1 (3) | C12B—C11B—C16B | 119.0 (3) |
C12A—C11A—C10A | 120.5 (3) | C12B—C11B—C10B | 120.5 (2) |
C16A—C11A—C10A | 120.4 (3) | C16B—C11B—C10B | 120.5 (2) |
C11A—C12A—C13A | 118.9 (3) | C13B—C12B—C11B | 118.9 (3) |
C11A—C12A—H12A | 120.6 | C13B—C12B—H12B | 120.6 |
C13A—C12A—H12A | 120.5 | C11B—C12B—H12B | 120.4 |
F1A—C13A—C14A | 119.6 (4) | F1B—C13B—C12B | 118.7 (3) |
F1A—C13A—C12A | 117.9 (4) | F1B—C13B—C14B | 118.0 (3) |
C14A—C13A—C12A | 122.5 (3) | C12B—C13B—C14B | 123.2 (3) |
C13A—C14A—C15A | 118.3 (3) | C13B—C14B—C15B | 117.5 (3) |
C13A—C14A—H14A | 120.8 | C13B—C14B—H14B | 121.3 |
C15A—C14A—H14A | 120.8 | C15B—C14B—H14B | 121.2 |
C14A—C15A—C16A | 120.6 (3) | C14B—C15B—C16B | 121.0 (3) |
C14A—C15A—H15A | 119.4 | C14B—C15B—H15B | 119.7 |
C16A—C15A—H15A | 120.0 | C16B—C15B—H15B | 119.3 |
C15A—C16A—C11A | 120.6 (3) | C15B—C16B—C11B | 120.4 (3) |
C15A—C16A—H16A | 119.6 | C15B—C16B—H16B | 119.9 |
C11A—C16A—H16A | 119.7 | C11B—C16B—H16B | 119.8 |
Experimental details
Crystal data | |
Chemical formula | C16H11FO2 |
Mr | 254.25 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 7.0130 (7), 11.7570 (9), 15.8070 (7) |
α, β, γ (°) | 97.515 (6), 100.520 (4), 105.397 (7) |
V (Å3) | 1213.12 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.38 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.925, 0.961 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19724, 5458, 3741 |
Rint | 0.103 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.074, 0.218, 1.15 |
No. of reflections | 5458 |
No. of parameters | 343 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.11, −0.33 |
Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
TMB is grateful to The Higher Education Commission of Pakistan for financial support under the national support initiative program for pre-doctoral fellowships in Quaid-i-Azam University.
References
Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Barry, R. D. (1964). Chem. Rev. 64, 229–260. CrossRef CAS Web of Science Google Scholar
Canedo, L. M., Puents, J. L. F. & Baz, J. P. (1997). J. Antibiot. 50, 175–176. CAS PubMed Web of Science Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 255–265. Copenhagen: Munksgaard. Google Scholar
Hill, R. A. (1986). Fortschr. Chem. Org. Naturst. 49, 1–78. CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whyte, A. C., Gloer, J. B., Scott, J. A. & Malloch, D. (1996). J. Nat. Prod. 59, 765–769. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isocoumarins are secondary metabolites derived from the acetate pathway and are structurally related to the coumarins, but with an inverted lactone ring (Hill, 1986). They are produced by microorganisms, insects and some higher plants, and have a wide range of biological activities, including antitumoral, antileucemic, antiviral and antimicrobial (Hill, 1986; Canedo et al., 1997; Whyte et al., 1996). Isocoumarins (Barry, 1964) are also useful intermediates in the synthesis of a variety of important compounds including some isoquinoline alkaloids. In view of their natural occurrence, biological activities and utility as synthetic intermediates, we have synthesized the title compound, and reported herein its crystal structure.
The asymmetric unit of the title compound contains two crystallographically independent molecules of similar geometry (Fig 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C1A-C4A/C9A/O2A), B (C4A-C9A), C (C11A-C16A) and D (C1B-C4B/C9B/O2B), E (C4B-C9B), F (C11B-C16B) are, of course, planar and dihedral angles between them are A/B = 1.44 (3)°, A/C = 87.50 (3)°, B/C = 86.91 (4)° and D/E = 0.46 (3)°, D/F = 88.10 (3)°, E/F = 87.65 (3)°.