organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Fluoro­benzoyl­meth­yl)benzoic acid

aDepartment of Applied Sciences, National Textile University, Faisalabad, Pakistan, bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and cDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: nasim_hasan_rama@hotmail.com

(Received 28 October 2008; accepted 29 October 2008; online 8 November 2008)

In the title compound, C15H11FO3, the aromatic rings are oriented at a dihedral angle of 69.26 (3)°. In the crystal structure, inversion dimers arise from pairs of inter­molecular O—H⋯O hydrogen bonds, and C—H⋯O hydrogen bonds further consolidate the packing. There are also C—H⋯π contacts between the benzoic acid and 2-fluoro­benzene rings.

Related literature

For the biological activity of isocoumarin and 3,4-dihydro­isocoumarin derivatives, see: Hill (1986[Hill, R. A. (1986). Fortschr. Chem. Org. Naturst. 49, 1-78.]); Napolitano (1997[Napolitano, E. (1997). Org. Prep. Proced. Int. 29, 631-665.]); Oikawa et al. (1997[Oikawa, T., Sasaki, M., Inose, M., Shimamura, M., Kuboki, H., Hirano, S. I., Kumagai, H., Ishizuka, M. & Takeuchi, T. (1997). Anticancer Res. 17, 1881-1886.]); Kongsaeree et al. (2003[Kongsaeree, P., Prabpai, S., Sriubolmas, N., Vongvein, C. & Wiyakrutta, S. (2003). J. Nat. Prod. 66, 709-711.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO3

  • Mr = 258.24

  • Monoclinic, P 21 /c

  • a = 8.3011 (6) Å

  • b = 15.3232 (8) Å

  • c = 9.9078 (10) Å

  • β = 96.942 (8)°

  • V = 1251.02 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (1) K

  • 0.52 × 0.38 × 0.30 mm

Data collection
  • Bruker–Nonius Kappa CCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.962, Tmax = 0.975

  • 8420 measured reflections

  • 2782 independent reflections

  • 2117 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.136

  • S = 1.12

  • 2782 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.80 2.621 (3) 175
C12—H12⋯O3ii 0.93 2.46 3.178 (3) 134
C4—H4⋯Cg2iii 0.93 2.72 3.535 (3) 146
C13—H13⋯Cg1ii 0.93 3.06 3.868 (3) 146
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z. Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an important intermediate in the conversion of isocoumarin to 3,4-dihydroisocoumarin. Derivatives of isocoumarin and 3,4-dihydroisocoumarin display a broad range of biological activity (Hill, 1986; Napolitano, 1997). 3,4-Dihydroisocoumarins are an important class of naturally occurring, biologically active gamma-lactones. Numbers of such dihydroisocoumarins have various uses, ranging from sweetening agents to bactericides, antimalarial, antituberclous, antifungal, antiulcergenic and antitumour (Oikawa et al., 1997; Kongsaeree et al., 2003).

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C10-C15) are, of course, planar and they are oriented at a dihedral angle of 69.26 (3)°. The (O1/O2/C1) moiety is oriented with respect to rings A and B at dihedral angles of 14.54 (4)° and 76.12 (3)°, respectively.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist C—H···π contacts (Table 1) between the benzoic acid and 2-fluorobenzene rings.

Related literature top

For the biological activity of isocoumarin and 3,4-dihydroisocoumarin derivatives, see: Hill (1986); Napolitano (1997); Oikawa et al. (1997); Kongsaeree et al. (2003). For bond-length data, see: Allen et al. (1987). Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

Experimental top

3-(2-Fluorophenyl)isocoumarin (6.4 mmol) was dissolved in ethanol (25 ml) and potassium hydroxide (30 ml 5%) was added. The mixture refluxed for about 5 h. After cooling the solvent was evaporated under reduced pressure. Cold water (20 ml) was added and the reaction mixture acidified with hydrochloric acid (5%). The precipitated keto acid was filtered, washed, dried and recrystalized from hot ethanol (yield; 87%, m.p. 404-405 K).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
2-(2-Fluorobenzoylmethyl)benzoic acid top
Crystal data top
C15H11FO3F(000) = 536
Mr = 258.24Dx = 1.371 Mg m3
Monoclinic, P21/cMelting point: 404(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.3011 (6) ÅCell parameters from 8503 reflections
b = 15.3232 (8) Åθ = 1–27.5°
c = 9.9078 (10) ŵ = 0.11 mm1
β = 96.942 (8)°T = 150 K
V = 1251.02 (17) Å3Block, colorless
Z = 40.52 × 0.38 × 0.31 mm
Data collection top
Bruker–Nonius Kappa CCD area-detector
diffractometer
2782 independent reflections
Radiation source: fine-focus sealed tube2117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.5°
ϕ and ω scansh = 910
Absorption correction: gaussian
(Coppens, 1970)
k = 1819
Tmin = 0.962, Tmax = 0.975l = 1212
8420 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.8217P]
where P = (Fo2 + 2Fc2)/3
2782 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H11FO3V = 1251.02 (17) Å3
Mr = 258.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3011 (6) ŵ = 0.11 mm1
b = 15.3232 (8) ÅT = 150 K
c = 9.9078 (10) Å0.52 × 0.38 × 0.31 mm
β = 96.942 (8)°
Data collection top
Bruker–Nonius Kappa CCD area-detector
diffractometer
2782 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
2117 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.975Rint = 0.040
8420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.12Δρmax = 0.23 e Å3
2782 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.15542 (18)0.18437 (8)0.10130 (16)0.0594 (4)
O10.3928 (2)0.00007 (12)0.35571 (16)0.0573 (5)
O20.61607 (19)0.07728 (11)0.40921 (15)0.0504 (4)
H20.61610.05060.48090.061*
O30.0632 (2)0.07181 (10)0.1708 (2)0.0626 (5)
C10.4909 (2)0.05329 (13)0.3244 (2)0.0361 (4)
C20.4762 (2)0.09750 (12)0.1908 (2)0.0326 (4)
C30.3662 (2)0.06805 (12)0.08185 (19)0.0316 (4)
C40.3530 (3)0.11624 (15)0.0370 (2)0.0410 (5)
H40.28140.09790.11110.049*
C50.4429 (3)0.19136 (15)0.0483 (2)0.0477 (6)
H50.42920.22360.12840.057*
C60.5523 (3)0.21865 (14)0.0580 (2)0.0468 (5)
H60.61400.26860.04990.056*
C70.5704 (3)0.17144 (13)0.1770 (2)0.0397 (5)
H70.64640.18890.24850.048*
C80.2660 (2)0.01340 (13)0.0886 (2)0.0335 (4)
H8A0.33380.05930.13250.040*
H8B0.22820.03250.00320.040*
C90.1223 (2)0.00021 (12)0.1651 (2)0.0344 (4)
C100.0483 (2)0.07466 (12)0.2322 (2)0.0330 (4)
C110.0665 (2)0.16193 (13)0.2005 (2)0.0395 (5)
C120.0064 (3)0.22847 (15)0.2627 (3)0.0520 (6)
H120.00710.28620.23710.062*
C130.1001 (3)0.20839 (18)0.3633 (3)0.0599 (7)
H130.14900.25270.40790.072*
C140.1213 (3)0.12269 (19)0.3988 (3)0.0603 (7)
H140.18540.10920.46670.072*
C150.0491 (3)0.05654 (16)0.3331 (2)0.0469 (5)
H150.06540.00110.35730.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0607 (9)0.0356 (7)0.0886 (11)0.0018 (6)0.0356 (8)0.0117 (7)
O10.0577 (10)0.0698 (12)0.0414 (9)0.0320 (9)0.0064 (7)0.0151 (8)
O20.0525 (9)0.0544 (10)0.0422 (8)0.0221 (8)0.0034 (7)0.0060 (7)
O30.0532 (10)0.0293 (8)0.1121 (15)0.0072 (7)0.0381 (10)0.0056 (9)
C10.0367 (10)0.0344 (10)0.0375 (10)0.0062 (8)0.0057 (8)0.0028 (8)
C20.0350 (10)0.0281 (9)0.0369 (10)0.0002 (7)0.0126 (8)0.0010 (7)
C30.0277 (9)0.0324 (10)0.0365 (10)0.0044 (7)0.0108 (8)0.0008 (8)
C40.0351 (10)0.0487 (12)0.0402 (11)0.0050 (9)0.0086 (8)0.0075 (9)
C50.0467 (12)0.0463 (12)0.0538 (13)0.0066 (10)0.0210 (11)0.0179 (10)
C60.0495 (13)0.0339 (11)0.0614 (14)0.0047 (9)0.0245 (11)0.0058 (10)
C70.0410 (11)0.0350 (11)0.0455 (12)0.0050 (8)0.0146 (9)0.0054 (9)
C80.0329 (10)0.0320 (10)0.0360 (10)0.0013 (8)0.0050 (8)0.0019 (8)
C90.0309 (9)0.0291 (10)0.0432 (11)0.0000 (8)0.0046 (8)0.0005 (8)
C100.0293 (9)0.0331 (10)0.0363 (10)0.0006 (7)0.0023 (7)0.0001 (8)
C110.0325 (10)0.0343 (10)0.0522 (13)0.0020 (8)0.0068 (9)0.0013 (9)
C120.0460 (12)0.0328 (11)0.0772 (17)0.0012 (9)0.0074 (12)0.0106 (11)
C130.0589 (15)0.0561 (15)0.0653 (16)0.0107 (12)0.0103 (13)0.0231 (13)
C140.0649 (17)0.0703 (18)0.0504 (14)0.0106 (13)0.0257 (12)0.0032 (12)
C150.0514 (13)0.0455 (12)0.0459 (12)0.0052 (10)0.0142 (10)0.0059 (10)
Geometric parameters (Å, º) top
F1—C111.343 (2)C8—H8A0.9700
O1—C11.220 (2)C8—H8B0.9700
O2—C11.308 (2)C9—O31.206 (2)
O2—H20.8199C9—C81.503 (3)
C2—C11.479 (3)C9—C101.495 (3)
C2—C31.402 (3)C10—C111.386 (3)
C2—C71.393 (3)C10—C151.388 (3)
C3—C41.383 (3)C11—C121.370 (3)
C3—C81.506 (3)C12—C131.371 (4)
C4—C51.384 (3)C12—H120.9299
C4—H40.9300C13—H130.9300
C5—C61.370 (3)C14—C131.376 (4)
C5—H50.9300C14—H140.9300
C6—H60.9299C15—C141.380 (3)
C7—C61.376 (3)C15—H150.9300
C7—H70.9300
C1—O2—H2109.5C9—C8—H8B109.1
O1—C1—O2121.87 (19)C3—C8—H8B109.1
O1—C1—C2123.30 (18)H8A—C8—H8B107.8
O2—C1—C2114.80 (17)O3—C9—C10119.08 (18)
C7—C2—C3120.47 (18)O3—C9—C8120.14 (18)
C7—C2—C1118.31 (18)C10—C9—C8120.77 (16)
C3—C2—C1121.18 (17)C11—C10—C15116.41 (19)
C4—C3—C2117.49 (18)C11—C10—C9125.32 (18)
C4—C3—C8119.50 (18)C15—C10—C9118.26 (18)
C2—C3—C8123.00 (17)F1—C11—C12116.77 (19)
C3—C4—C5121.6 (2)F1—C11—C10119.81 (18)
C3—C4—H4119.2C12—C11—C10123.4 (2)
C5—C4—H4119.2C11—C12—C13118.7 (2)
C6—C5—C4120.4 (2)C11—C12—H12120.7
C6—C5—H5119.7C13—C12—H12120.6
C4—C5—H5119.9C12—C13—C14120.1 (2)
C5—C6—C7119.4 (2)C12—C13—H13120.0
C5—C6—H6120.4C14—C13—H13119.9
C7—C6—H6120.2C13—C14—C15120.2 (2)
C6—C7—C2120.5 (2)C13—C14—H14120.0
C6—C7—H7119.7C15—C14—H14119.8
C2—C7—H7119.8C14—C15—C10121.1 (2)
C9—C8—C3112.56 (16)C14—C15—H15119.5
C9—C8—H8A109.1C10—C15—H15119.4
C3—C8—H8A109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.802.621 (3)175
C12—H12···O3ii0.932.463.178 (3)134
C4—H4···Cg2iii0.932.723.535 (3)146
C13—H13···Cg1ii0.933.063.868 (3)146
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H11FO3
Mr258.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.3011 (6), 15.3232 (8), 9.9078 (10)
β (°) 96.942 (8)
V3)1251.02 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.52 × 0.38 × 0.31
Data collection
DiffractometerBruker–Nonius Kappa CCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.962, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
8420, 2782, 2117
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 1.12
No. of reflections2782
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.802.621 (3)175
C12—H12···O3ii0.932.463.178 (3)134
C4—H4···Cg2iii0.932.723.535 (3)146
C13—H13···Cg1ii0.933.063.868 (3)146
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y, z.
 

Acknowledgements

M. Tariq Mahmood Babar is grateful to the Higher Education Commission of Pakistan for financial support under the National Support Initiative Program for Pre-doctoral Fellowships at Quaid-i-Azam University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationHill, R. A. (1986). Fortschr. Chem. Org. Naturst. 49, 1–78.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKongsaeree, P., Prabpai, S., Sriubolmas, N., Vongvein, C. & Wiyakrutta, S. (2003). J. Nat. Prod. 66, 709–711.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNapolitano, E. (1997). Org. Prep. Proced. Int. 29, 631–665.  CrossRef CAS Google Scholar
First citationOikawa, T., Sasaki, M., Inose, M., Shimamura, M., Kuboki, H., Hirano, S. I., Kumagai, H., Ishizuka, M. & Takeuchi, T. (1997). Anticancer Res. 17, 1881–1886.  CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds