organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,5-Tri­meth­oxy­benzohydrazidium chloride

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 29 October 2008; accepted 6 November 2008; online 13 November 2008)

The title compound, C10H15N2O4+·Cl, was obtained as an unexpected by-product during the synthesis of 1-[2-(substituted ar­yl)]-3-methyl­pyrazol-5-ones. The hydrazide group is essentially planar, with an r.s.m. deviation of 0.020 (2) Å, and is oriented at a dihedral angle of 30.52 (3)° with respect to the benzene ring. In the crystal structure, the cations and anions are linked through N—H⋯O and N—H⋯Cl hydrogen bonds, forming a mol­ecular tape running along the b axis.

Related literature

For general background, see: Jin et al. (2006[Jin, L.-H., Chen, J., Song, B.-A., Chen, Z., Yang, S., Li, Q.-Z., Hu, D.-Y. & Xu, R.-Q. (2006). Bioorg. Med. Chem. Lett. 16, 5036-5041.]); Song et al. (2005[Song, B.-A., Chen, C.-J., Yang, S., Jin, L.-H., Xue, W., Zhang, S.-M., Zou, Z.-H., Hu, D.-Y. & Liu, G. (2005). Huaxue Xuebao, 63, 1720-1725.]); Yang et al. (2007[Yang, S., Li, Z., Jin, L., Song, B., Liu, G., Chen, J., Chen, Z., Hu, D., Xue, W. & Xu, R. (2007). Bioorg. Med. Chem. Lett. 17, 2193-2196.]). For a related structure, see: Zareef et al. (2006[Zareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E62, o3259-o3261.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15N2O4+·Cl

  • Mr = 262.69

  • Monoclinic, C 2/c

  • a = 38.587 (3) Å

  • b = 4.8202 (3) Å

  • c = 13.5915 (10) Å

  • β = 108.459 (2)°

  • V = 2397.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 223 (1) K

  • 0.29 × 0.28 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 0.984

  • 15536 measured reflections

  • 3483 independent reflections

  • 2987 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.06

  • 3483 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.876 (19) 2.007 (19) 2.8200 (13) 154.0 (18)
N2—H2NA⋯Cl1ii 0.90 2.25 3.1169 (11) 162
N2—H2NB⋯Cl1 0.90 2.20 3.0937 (11) 171
N2—H2NC⋯Cl1iii 0.90 2.30 3.1724 (12) 164
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

3,4,5-Trimethoxybenzohydrazide is an intermediate toward variety of hetero- cyclic systems. Thioether derivatives bearing 1,3,4-thiadiazole and 3,4,5-tri- methoxyphenyl moieties and N-substituted benzylidene-3,4,5-trimethoxybenzo- hydrazide and 3-acetyl-2-substituted phenyl-5-(3,4,5-trimethoxyphenyl)-2,3 -dihydro-1,3,4-oxadiazole derivatives were proved to have good anti-cancer and anti-tumor bioactivities (Song et al., 2005; Jin et al., 2006). 4-Alkyl(aryl)- thioquinazoline derivatives synthesized from gallic acid were highly effective against cancer cell lines (Yang et al., 2007). The title compound was obtained as an unexpected by-product during synthesis of 1-[2-(substituted aryl)]-3 -methylpyrazol-5-ones, and we report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and may be compared with the corresponding ones in 3,4,5-trimethoxybenzohydrazide hemihydrate (Zareef et al., 2006). The (N1/N2/O4/C7) plane is oriented with respect to ring A (C1-C6) at a dihedral angle of 30.52 (3)°, which is larger than the corresponding one [9.27 (10)°] in 3,4,5-trimethoxybenzohydrazide hemihydrate.

In the crystal structure, the molecules are linked through N-H···O and N-H···Cl hydrogen bonds, forming a molecular tape running along the b axis (Fig. 2). No significant interaction is observed between the tapes (Fig. 3).

Related literature top

For general background, see: Jin et al. (2006); Song et al. (2005); Yang et al. (2007). For a related structure, see: Zareef et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 3,4,5-trimethoxybenzohydrazide (0.01 mol) and ethyl acetoacetate (0.01 mol) was refluxed in methanol (25 ml), containing concentrated hydrochloric acid (1 ml) for 8 h in a water-bath. The resulting solution was then concentrated and cooled at room temperature. The solid thus separated was washed with methanol, dried and recrystallized with acetone. Anal. calcd. for C10H15ClN2O4: C 45.72, H 5.76, N 10.66%; found: C 45.57, H 5.64, N 10.69%.

Refinement top

H1 atom (for NH) was located in difference synthesis and refined isotropically [N-H = 0.876 (19) Å and Uiso(H) = 0.039 (5) Å2]. The remaining H atoms were positioned geometrically, with N-H = 0.90 Å (for NH3) and C-H = 0.94 and 0.97 Å for aromatic and metyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram, showing the molecular tape running along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A crystal packing diagram, viewed along the b axis.
3,4,5-Trimethoxybenzohydrazidium chloride top
Crystal data top
C10H15N2O4+·ClF(000) = 1104.00
Mr = 262.69Dx = 1.455 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 12804 reflections
a = 38.587 (3) Åθ = 3.0–30.0°
b = 4.8202 (3) ŵ = 0.32 mm1
c = 13.5915 (10) ÅT = 223 K
β = 108.459 (2)°Platelet, colorless
V = 2397.9 (3) Å30.29 × 0.28 × 0.05 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2987 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.035
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 5450
Tmin = 0.930, Tmax = 0.984k = 66
15536 measured reflectionsl = 1919
3483 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.9082P]
where P = (Fo2 + 2Fc2)/3
3483 reflections(Δ/σ)max = 0.003
158 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H15N2O4+·ClV = 2397.9 (3) Å3
Mr = 262.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.587 (3) ŵ = 0.32 mm1
b = 4.8202 (3) ÅT = 223 K
c = 13.5915 (10) Å0.29 × 0.28 × 0.05 mm
β = 108.459 (2)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3483 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
2987 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.984Rint = 0.035
15536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.51 e Å3
3483 reflectionsΔρmin = 0.19 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.531194 (8)0.74543 (6)0.14789 (2)0.02591 (11)
O10.29508 (2)0.1702 (2)0.04400 (7)0.0261 (2)
O20.29359 (2)0.12014 (18)0.20875 (7)0.02407 (19)
O30.35072 (3)0.4308 (2)0.31676 (7)0.0301 (2)
O40.43237 (2)0.16714 (18)0.07270 (7)0.02515 (19)
N10.44683 (3)0.2704 (2)0.12743 (9)0.0220 (2)
N20.47777 (3)0.24854 (19)0.09232 (9)0.0222 (2)
H2NA0.49000.09160.11730.033*
H2NB0.49250.39560.11500.033*
H2NC0.47030.24460.02250.033*
C10.38998 (3)0.0818 (2)0.13600 (9)0.0198 (2)
C20.35979 (3)0.0716 (2)0.07763 (9)0.0207 (2)
H20.36160.19090.02480.025*
C30.32687 (3)0.0453 (2)0.09891 (8)0.0204 (2)
C40.32509 (3)0.1212 (2)0.18165 (9)0.0209 (2)
C50.35556 (3)0.2748 (2)0.23870 (9)0.0217 (2)
C60.38830 (3)0.2592 (2)0.21544 (9)0.0212 (2)
H60.40870.36560.25240.025*
C70.42422 (3)0.0465 (2)0.10930 (8)0.0189 (2)
C80.29543 (4)0.3376 (3)0.04212 (10)0.0302 (3)
H8A0.30350.22700.09040.045*
H8B0.27100.40730.07670.045*
H8C0.31200.49230.01790.045*
C90.27160 (4)0.3649 (3)0.17816 (11)0.0297 (3)
H9A0.28620.52740.20660.045*
H9B0.25090.35520.20410.045*
H9C0.26280.37750.10310.045*
C100.38005 (4)0.6091 (3)0.37142 (10)0.0311 (3)
H10A0.40110.49810.40840.047*
H10B0.37260.72100.42050.047*
H10C0.38640.72940.32250.047*
H10.4380 (5)0.439 (4)0.1231 (14)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02223 (16)0.02581 (17)0.02881 (17)0.00046 (9)0.00682 (12)0.00128 (10)
O10.0225 (4)0.0335 (5)0.0239 (4)0.0077 (3)0.0095 (3)0.0079 (4)
O20.0240 (4)0.0253 (4)0.0279 (4)0.0016 (3)0.0153 (3)0.0007 (3)
O30.0292 (4)0.0377 (5)0.0280 (4)0.0087 (4)0.0158 (4)0.0148 (4)
O40.0266 (4)0.0200 (4)0.0313 (5)0.0006 (3)0.0127 (4)0.0037 (3)
N10.0220 (5)0.0169 (5)0.0317 (5)0.0004 (3)0.0149 (4)0.0014 (4)
N20.0214 (5)0.0202 (5)0.0280 (5)0.0019 (3)0.0122 (4)0.0009 (4)
C10.0209 (5)0.0190 (5)0.0213 (5)0.0004 (4)0.0092 (4)0.0015 (4)
C20.0234 (5)0.0199 (5)0.0208 (5)0.0012 (4)0.0099 (4)0.0010 (4)
C30.0218 (5)0.0207 (5)0.0195 (5)0.0028 (4)0.0074 (4)0.0005 (4)
C40.0216 (5)0.0228 (5)0.0213 (5)0.0010 (4)0.0109 (4)0.0008 (4)
C50.0246 (6)0.0229 (5)0.0199 (5)0.0010 (4)0.0103 (4)0.0022 (4)
C60.0216 (5)0.0215 (5)0.0217 (5)0.0025 (4)0.0086 (4)0.0020 (4)
C70.0202 (5)0.0180 (5)0.0186 (5)0.0010 (4)0.0062 (4)0.0019 (4)
C80.0284 (6)0.0371 (7)0.0255 (6)0.0072 (5)0.0092 (5)0.0091 (5)
C90.0275 (6)0.0294 (6)0.0358 (7)0.0029 (5)0.0152 (5)0.0030 (5)
C100.0328 (6)0.0344 (7)0.0274 (6)0.0074 (5)0.0112 (5)0.0118 (5)
Geometric parameters (Å, º) top
O1—C31.3581 (14)C2—C31.3950 (15)
O1—C81.4251 (15)C2—H20.9400
O2—C41.3771 (13)C3—C41.4009 (15)
O2—C91.4356 (16)C4—C51.3982 (16)
O3—C51.3605 (14)C5—C61.3981 (16)
O3—C101.4280 (15)C6—H60.9400
O4—C71.2271 (14)C8—H8A0.9700
N1—C71.3602 (14)C8—H8B0.9700
N1—N21.4230 (13)C8—H8C0.9700
N1—H10.876 (19)C9—H9A0.9700
N2—H2NA0.9000C9—H9B0.9700
N2—H2NB0.9000C9—H9C0.9700
N2—H2NC0.9000C10—H10A0.9700
C1—C61.3947 (15)C10—H10B0.9700
C1—C21.3958 (15)C10—H10C0.9700
C1—C71.4867 (15)
C3—O1—C8117.43 (9)C4—C5—C6120.52 (10)
C4—O2—C9114.20 (9)C1—C6—C5118.34 (10)
C5—O3—C10117.16 (9)C1—C6—H6120.8
C7—N1—N2116.00 (9)C5—C6—H6120.8
C7—N1—H1120.7 (11)O4—C7—N1120.50 (10)
N2—N1—H1113.3 (11)O4—C7—C1123.82 (10)
N1—N2—H2NA109.5N1—C7—C1115.68 (10)
N1—N2—H2NB109.5O1—C8—H8A109.5
H2NA—N2—H2NB109.5O1—C8—H8B109.5
N1—N2—H2NC109.5H8A—C8—H8B109.5
H2NA—N2—H2NC109.5O1—C8—H8C109.5
H2NB—N2—H2NC109.5H8A—C8—H8C109.5
C6—C1—C2121.99 (10)H8B—C8—H8C109.5
C6—C1—C7121.46 (10)O2—C9—H9A109.5
C2—C1—C7116.55 (10)O2—C9—H9B109.5
C3—C2—C1119.01 (10)H9A—C9—H9B109.5
C3—C2—H2120.5O2—C9—H9C109.5
C1—C2—H2120.5H9A—C9—H9C109.5
O1—C3—C2124.68 (10)H9B—C9—H9C109.5
O1—C3—C4115.46 (10)O3—C10—H10A109.5
C2—C3—C4119.86 (10)O3—C10—H10B109.5
O2—C4—C5120.82 (10)H10A—C10—H10B109.5
O2—C4—C3118.97 (10)O3—C10—H10C109.5
C5—C4—C3120.13 (10)H10A—C10—H10C109.5
O3—C5—C4115.21 (10)H10B—C10—H10C109.5
O3—C5—C6124.26 (11)
C6—C1—C2—C30.46 (17)O2—C4—C5—O33.67 (16)
C7—C1—C2—C3179.61 (10)C3—C4—C5—O3179.53 (10)
C8—O1—C3—C20.71 (17)O2—C4—C5—C6175.34 (10)
C8—O1—C3—C4178.87 (11)C3—C4—C5—C61.46 (17)
C1—C2—C3—O1175.98 (10)C2—C1—C6—C52.13 (17)
C1—C2—C3—C43.58 (16)C7—C1—C6—C5177.79 (10)
C9—O2—C4—C577.58 (14)O3—C5—C6—C1177.30 (11)
C9—O2—C4—C3105.59 (12)C4—C5—C6—C11.62 (17)
O1—C3—C4—O27.64 (15)N2—N1—C7—O45.88 (16)
C2—C3—C4—O2172.76 (10)N2—N1—C7—C1173.78 (10)
O1—C3—C4—C5175.50 (10)C6—C1—C7—O4150.77 (11)
C2—C3—C4—C54.09 (17)C2—C1—C7—O429.15 (16)
C10—O3—C5—C4174.81 (11)C6—C1—C7—N129.58 (15)
C10—O3—C5—C66.22 (18)C2—C1—C7—N1150.50 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.876 (19)2.007 (19)2.8200 (13)154.0 (18)
N2—H2NA···Cl1ii0.902.253.1169 (11)162
N2—H2NB···Cl10.902.203.0937 (11)171
N2—H2NC···Cl1iii0.902.303.1724 (12)164
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H15N2O4+·Cl
Mr262.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)38.587 (3), 4.8202 (3), 13.5915 (10)
β (°) 108.459 (2)
V3)2397.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.29 × 0.28 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.930, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
15536, 3483, 2987
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06
No. of reflections3483
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.19

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.876 (19)2.007 (19)2.8200 (13)154.0 (18)
N2—H2NA···Cl1ii0.902.253.1169 (11)162
N2—H2NB···Cl10.902.203.0937 (11)171
N2—H2NC···Cl1iii0.902.303.1724 (12)164
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJin, L.-H., Chen, J., Song, B.-A., Chen, Z., Yang, S., Li, Q.-Z., Hu, D.-Y. & Xu, R.-Q. (2006). Bioorg. Med. Chem. Lett. 16, 5036–5041.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, B.-A., Chen, C.-J., Yang, S., Jin, L.-H., Xue, W., Zhang, S.-M., Zou, Z.-H., Hu, D.-Y. & Liu, G. (2005). Huaxue Xuebao, 63, 1720–1725.  CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S., Li, Z., Jin, L., Song, B., Liu, G., Chen, J., Chen, Z., Hu, D., Xue, W. & Xu, R. (2007). Bioorg. Med. Chem. Lett. 17, 2193–2196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E62, o3259–o3261.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds