metal-organic compounds
Dibromido(di-2-pyridylamine-κ2N,N′)mercury(II)
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bIslamic Azad University, Izeh Branch, Khozestan, Iran, and cDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Fars, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
In the molecule of the title compound, [HgBr2(C10H9N3)], the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from the chelating di-2-pyridylamine ligand and by two Br atoms. In the intermolecular N—H⋯Br hydrogen bonds link the molecules into centrosymmetric dimers. There are π–π contacts between the pyridine rings [centroid–centroid distances = 3.9662 (5) and 3.9321 (4) Å]. There also exists a C—H⋯π contact between the pyridine CH group and a pyridine ring.
Related literature
For related literature, see: Ahmadi et al. (2008); Kalateh et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For related structures, see: Xie et al. (2004); Hughes et al. (1985).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808038129/hk2575sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808038129/hk2575Isup2.hkl
For the preparation of the title compound, (I), a solution of di-2-pyridylamine (0.25 g, 1.43 mmol) in methanol (20 ml) was added to a solution of HgBr2 (0.51 g, 1.43 mmol) in acetonitrile (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.55 g, 72.3%).
H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The highest and lowest peaks are located 0.69 Å and 0.78 Å from Hg1 atom, respectively.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[HgBr2(C10H9N3)] | Z = 2 |
Mr = 531.59 | F(000) = 480 |
Triclinic, P1 | Dx = 2.820 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1284 (16) Å | Cell parameters from 1657 reflections |
b = 8.7645 (18) Å | θ = 2.3–29.2° |
c = 9.912 (2) Å | µ = 18.65 mm−1 |
α = 113.45 (3)° | T = 120 K |
β = 98.41 (3)° | Prism, colorless |
γ = 97.79 (3)° | 0.40 × 0.35 × 0.25 mm |
V = 626.1 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 3350 independent reflections |
Radiation source: fine-focus sealed tube | 3234 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
ϕ and ω scans | θmax = 29.2°, θmin = 2.3° |
Absorption correction: numerical (shape of crystal determined optically) | h = −11→11 |
Tmin = 0.016, Tmax = 0.080 | k = −11→10 |
7839 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0882P)2 + 2.3955P] where P = (Fo2 + 2Fc2)/3 |
3350 reflections | (Δ/σ)max = 0.059 |
145 parameters | Δρmax = 4.33 e Å−3 |
0 restraints | Δρmin = −6.54 e Å−3 |
[HgBr2(C10H9N3)] | γ = 97.79 (3)° |
Mr = 531.59 | V = 626.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1284 (16) Å | Mo Kα radiation |
b = 8.7645 (18) Å | µ = 18.65 mm−1 |
c = 9.912 (2) Å | T = 120 K |
α = 113.45 (3)° | 0.40 × 0.35 × 0.25 mm |
β = 98.41 (3)° |
Bruker SMART CCD area-detector diffractometer | 3350 independent reflections |
Absorption correction: numerical (shape of crystal determined optically) | 3234 reflections with I > 2σ(I) |
Tmin = 0.016, Tmax = 0.080 | Rint = 0.087 |
7839 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.15 | Δρmax = 4.33 e Å−3 |
3350 reflections | Δρmin = −6.54 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.28140 (3) | 0.22806 (4) | 0.84793 (3) | 0.02226 (15) | |
Br1 | 0.03376 (10) | 0.29535 (11) | 0.71493 (10) | 0.0259 (2) | |
Br2 | 0.58403 (10) | 0.34148 (10) | 0.83842 (9) | 0.0219 (2) | |
N1 | 0.2053 (9) | 0.1755 (9) | 1.0425 (8) | 0.0195 (12) | |
N2 | 0.3018 (9) | −0.0818 (8) | 0.9915 (8) | 0.0190 (12) | |
H2A | 0.3426 | −0.1362 | 1.0395 | 0.023* | |
N3 | 0.3006 (9) | −0.0591 (8) | 0.7601 (8) | 0.0192 (12) | |
C1 | 0.1347 (11) | 0.2988 (10) | 1.1369 (11) | 0.0239 (15) | |
H1 | 0.1098 | 0.3845 | 1.1096 | 0.029* | |
C2 | 0.0991 (11) | 0.3023 (11) | 1.2678 (11) | 0.0248 (16) | |
H2 | 0.0516 | 0.3881 | 1.3288 | 0.030* | |
C3 | 0.1363 (11) | 0.1728 (11) | 1.3080 (10) | 0.0247 (15) | |
H3 | 0.1151 | 0.1727 | 1.3977 | 0.030* | |
C4 | 0.2037 (11) | 0.0462 (11) | 1.2157 (10) | 0.0225 (14) | |
H4 | 0.2279 | −0.0412 | 1.2407 | 0.027* | |
C5 | 0.2355 (9) | 0.0519 (10) | 1.0815 (9) | 0.0178 (13) | |
C6 | 0.3175 (9) | −0.1477 (10) | 0.8430 (9) | 0.0172 (13) | |
C7 | 0.3535 (10) | −0.3113 (10) | 0.7834 (10) | 0.0215 (14) | |
H7 | 0.3679 | −0.3693 | 0.8437 | 0.026* | |
C8 | 0.3671 (11) | −0.3850 (11) | 0.6355 (10) | 0.0249 (15) | |
H8 | 0.3886 | −0.4940 | 0.5944 | 0.030* | |
C9 | 0.3485 (12) | −0.2952 (11) | 0.5481 (10) | 0.0262 (16) | |
H9 | 0.3575 | −0.3414 | 0.4479 | 0.031* | |
C10 | 0.3158 (11) | −0.1340 (12) | 0.6165 (10) | 0.0248 (16) | |
H10 | 0.3034 | −0.0731 | 0.5587 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0242 (2) | 0.0212 (2) | 0.0290 (2) | 0.00845 (13) | 0.00573 (13) | 0.01720 (14) |
Br1 | 0.0239 (4) | 0.0253 (4) | 0.0341 (4) | 0.0070 (3) | 0.0012 (3) | 0.0194 (3) |
Br2 | 0.0237 (4) | 0.0208 (4) | 0.0267 (4) | 0.0057 (3) | 0.0061 (3) | 0.0151 (3) |
N1 | 0.023 (3) | 0.016 (3) | 0.019 (3) | 0.006 (2) | 0.001 (2) | 0.008 (2) |
N2 | 0.026 (3) | 0.015 (3) | 0.022 (3) | 0.007 (2) | 0.004 (2) | 0.013 (2) |
N3 | 0.024 (3) | 0.016 (3) | 0.018 (3) | 0.005 (2) | 0.002 (2) | 0.009 (2) |
C1 | 0.025 (4) | 0.015 (3) | 0.032 (4) | 0.005 (3) | 0.003 (3) | 0.011 (3) |
C2 | 0.024 (3) | 0.020 (3) | 0.030 (4) | 0.007 (3) | 0.007 (3) | 0.009 (3) |
C3 | 0.029 (4) | 0.024 (4) | 0.022 (3) | 0.006 (3) | 0.009 (3) | 0.010 (3) |
C4 | 0.026 (3) | 0.021 (3) | 0.024 (4) | 0.005 (3) | 0.003 (3) | 0.012 (3) |
C5 | 0.014 (3) | 0.017 (3) | 0.020 (3) | 0.001 (2) | 0.002 (2) | 0.007 (3) |
C6 | 0.013 (3) | 0.016 (3) | 0.020 (3) | −0.002 (2) | −0.002 (2) | 0.009 (3) |
C7 | 0.024 (3) | 0.017 (3) | 0.024 (4) | 0.004 (3) | 0.004 (3) | 0.010 (3) |
C8 | 0.027 (4) | 0.022 (4) | 0.023 (4) | 0.005 (3) | 0.002 (3) | 0.008 (3) |
C9 | 0.037 (4) | 0.021 (4) | 0.017 (3) | 0.005 (3) | 0.003 (3) | 0.006 (3) |
C10 | 0.030 (4) | 0.029 (4) | 0.020 (3) | 0.008 (3) | 0.004 (3) | 0.015 (3) |
Br1—Hg1 | 2.5106 (11) | C5—N1 | 1.327 (10) |
Br2—Hg1 | 2.5549 (11) | C5—N2 | 1.393 (10) |
N1—Hg1 | 2.301 (7) | C6—N3 | 1.342 (10) |
N2—H2A | 0.8600 | C6—N2 | 1.384 (10) |
N3—Hg1 | 2.350 (7) | C6—C7 | 1.408 (11) |
C1—C2 | 1.360 (13) | C7—C8 | 1.376 (12) |
C1—N1 | 1.376 (11) | C7—H7 | 0.9300 |
C1—H1 | 0.9300 | C8—C9 | 1.389 (13) |
C2—C3 | 1.398 (13) | C8—H8 | 0.9300 |
C2—H2 | 0.9300 | C9—C10 | 1.385 (12) |
C3—C4 | 1.368 (12) | C9—H9 | 0.9300 |
C3—H3 | 0.9300 | C10—N3 | 1.342 (11) |
C4—C5 | 1.410 (11) | C10—H10 | 0.9300 |
C4—H4 | 0.9300 | ||
N1—Hg1—N3 | 81.1 (2) | C2—C3—H3 | 119.9 |
N1—Hg1—Br1 | 109.13 (17) | C3—C4—C5 | 118.2 (8) |
N3—Hg1—Br1 | 117.16 (17) | C3—C4—H4 | 120.9 |
N1—Hg1—Br2 | 125.41 (17) | C5—C4—H4 | 120.9 |
N3—Hg1—Br2 | 96.23 (18) | N1—C5—N2 | 121.7 (7) |
Br1—Hg1—Br2 | 119.68 (3) | N1—C5—C4 | 122.9 (7) |
C1—N1—Hg1 | 114.3 (5) | N2—C5—C4 | 115.4 (7) |
C5—N1—Hg1 | 128.2 (6) | N3—C6—N2 | 121.6 (7) |
C5—N1—C1 | 117.2 (7) | N3—C6—C7 | 121.6 (7) |
C6—N2—C5 | 135.0 (7) | N2—C6—C7 | 116.9 (7) |
C6—N2—H2A | 112.5 | C8—C7—C6 | 119.6 (8) |
C5—N2—H2A | 112.5 | C8—C7—H7 | 120.2 |
C6—N3—Hg1 | 126.5 (5) | C6—C7—H7 | 120.2 |
C10—N3—Hg1 | 115.6 (6) | C7—C8—C9 | 119.4 (8) |
C10—N3—C6 | 117.4 (7) | C7—C8—H8 | 120.3 |
C2—C1—N1 | 123.6 (8) | C9—C8—H8 | 120.3 |
C2—C1—H1 | 118.1 | C8—C9—C10 | 117.2 (8) |
N1—C1—H1 | 118.3 | C8—C9—H9 | 121.4 |
C1—C2—C3 | 117.9 (8) | C10—C9—H9 | 121.4 |
C1—C2—H2 | 121.0 | N3—C10—C9 | 124.8 (8) |
C3—C2—H2 | 121.1 | N3—C10—H10 | 117.5 |
C4—C3—C2 | 120.2 (8) | C9—C10—H10 | 117.7 |
C4—C3—H3 | 120.0 | ||
C1—N1—Hg1—N3 | −166.6 (6) | C6—C7—C8—C9 | 1.3 (12) |
C5—N1—Hg1—N3 | 20.2 (6) | C7—C8—C9—C10 | −0.3 (13) |
C1—N1—Hg1—Br1 | −50.8 (6) | C8—C9—C10—N3 | −0.1 (14) |
C5—N1—Hg1—Br1 | 136.0 (6) | N2—C5—N1—C1 | 178.0 (7) |
C1—N1—Hg1—Br2 | 102.0 (5) | C4—C5—N1—C1 | −2.2 (11) |
C5—N1—Hg1—Br2 | −71.1 (7) | N2—C5—N1—Hg1 | −9.0 (10) |
C10—N3—Hg1—N1 | 168.0 (6) | C4—C5—N1—Hg1 | 170.8 (6) |
C6—N3—Hg1—N1 | −20.2 (6) | C2—C1—N1—C5 | 1.8 (12) |
C6—N3—Hg1—Br1 | −127.2 (6) | C2—C1—N1—Hg1 | −172.2 (7) |
C10—N3—Hg1—Br1 | 61.0 (6) | N3—C6—N2—C5 | 16.3 (13) |
C6—N3—Hg1—Br2 | 104.8 (6) | C7—C6—N2—C5 | −164.2 (8) |
C10—N3—Hg1—Br2 | −67.0 (6) | N1—C5—N2—C6 | −16.8 (13) |
N1—C1—C2—C3 | −0.2 (13) | C4—C5—N2—C6 | 163.3 (8) |
C1—C2—C3—C4 | −1.0 (13) | C9—C10—N3—C6 | −0.4 (13) |
C2—C3—C4—C5 | 0.6 (12) | C9—C10—N3—Hg1 | 172.2 (7) |
C3—C4—C5—N1 | 1.0 (12) | N2—C6—N3—C10 | −179.2 (7) |
C3—C4—C5—N2 | −179.1 (7) | C7—C6—N3—C10 | 1.4 (11) |
N3—C6—C7—C8 | −1.8 (11) | N2—C6—N3—Hg1 | 9.2 (10) |
N2—C6—C7—C8 | 178.7 (7) | C7—C6—N3—Hg1 | −170.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br2i | 0.86 | 2.62 | 3.472 (3) | 170 |
C2—H2···Cg3ii | 0.93 | 3.20 | 3.587 (3) | 107 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [HgBr2(C10H9N3)] |
Mr | 531.59 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.1284 (16), 8.7645 (18), 9.912 (2) |
α, β, γ (°) | 113.45 (3), 98.41 (3), 97.79 (3) |
V (Å3) | 626.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 18.65 |
Crystal size (mm) | 0.40 × 0.35 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Numerical (shape of crystal determined optically) |
Tmin, Tmax | 0.016, 0.080 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7839, 3350, 3234 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.140, 1.15 |
No. of reflections | 3350 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 4.33, −6.54 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Br1—Hg1 | 2.5106 (11) | N1—Hg1 | 2.301 (7) |
Br2—Hg1 | 2.5549 (11) | N3—Hg1 | 2.350 (7) |
N1—Hg1—N3 | 81.1 (2) | N1—Hg1—Br2 | 125.41 (17) |
N1—Hg1—Br1 | 109.13 (17) | N3—Hg1—Br2 | 96.23 (18) |
N3—Hg1—Br1 | 117.16 (17) | Br1—Hg1—Br2 | 119.68 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br2i | 0.86 | 2.620 | 3.472 (3) | 170 |
C2—H2···Cg3ii | 0.93 | 3.197 | 3.587 (3) | 107 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521–1527. CSD CrossRef CAS Google Scholar
Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73–78. Web of Science CSD CrossRef CAS Google Scholar
Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we reported the syntheses and crystal structures of [Hg(4,4'-dmbpy) I2], (II), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (III), (Tadayon Pour, et al., 2008), [Hg(dmphen)I2], (IV), (Yousefi, Rashidi Vahid et al., 2008), {[HgCl(dm4bt)]2(µ-Cl)2}, (V), (Khavasi et al., 2008), [Hg(6-mbpy)Cl2], (VI), (Ahmadi et al., 2008) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (VII), (Kalateh et al., 2008) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'- bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, dmphen is 4,7-diphenyl-1,10- phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. There are two HgII complexes, with formula, [Hg(N—N)Br2], such as [Hg(TPA)Br2], (VIII), (Xie et al., 2004) and [Hg(TPD)Br2], (IX), (Hughes et al., 1985) [where TPA is tris(2-pyridyl)amine and TPD is N,N,N',N'-Tetramethyl-o-phenylenediamine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from di-2-pyridylamine and two Br atoms. The Hg-Br and Hg-N bond lengths and angles (Table 1) are within normal ranges, as in (VIII).
In the crystal structure, intermolecular N-H···Br hydrogen bonds link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the pyridine rings Cg2···Cg2i and Cg2···Cg3ii [symmetry codes: (i) x, -y, 2 - z, (ii) 1 - x,- y, 2 - z, where Cg2 and Cg3 are centroids of the rings A (N1/C1-C5) and B (N3/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distances of 3.9662 (5) %A and 3.9321 (4) %A, respectively. There also exists a C—H···π contact (Table 1) between the pyridine CH group and pyridine ring.