organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S,5S)-2-(2-Fluoro­phen­yl)-1,3-dioxolane-4,5-dicarboxamide

aSate Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 21 November 2008; accepted 24 November 2008; online 29 November 2008)

In the mol­ecule of the title compound, C11H11FN2O4, the five-membered ring adopts an envelope conformation. An intra­molecular N—H⋯F hydrogen bond occurs. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Kim et al. (1994[Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471-1485.]); Pandey et al. (1997[Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11FN2O4

  • Mr = 254.22

  • Orthorhombic, P 21 21 21

  • a = 4.8760 (5) Å

  • b = 9.1290 (7) Å

  • c = 24.8160 (9) Å

  • V = 1104.63 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 294 (2) K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.987

  • 2157 measured reflections

  • 1301 independent reflections

  • 898 reflections with I > 2σ(I)

  • Rint = 0.072

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.125

  • S = 1.00

  • 1301 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.32 3.089 (4) 149
N1—H1B⋯O3ii 0.86 2.37 3.164 (4) 153
N2—H2A⋯O4iii 0.86 2.09 2.944 (5) 172
N2—H2B⋯F1 0.86 2.31 3.130 (4) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al., 1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. The five-membered ring adopts envelope conformation with C7 atom displaced by 0.557 (3) Å from the plane of the other ring atoms. The intramolecular N-H···F hydrogen bond (Table 1) results in the formation of a nine-membered ring: (F1/C1/C6/C7/O2/C9/C11/N2/H2B) having twisted conformation.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Kim et al. (1994); Pandey et al. (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparatrion of the title compound, a mixture of 2-fluorbenzaldehyde (302 mg, 2.43 mmol), (2S,3S)-diethyltartrate (500 mg, 2.43 mmol), anhydrous copper sulfate (776 mg, 2.86 mmol) and one drop of methanesulfonic acid in anhydrous toluen (8 ml) was stirred at room temperature for 12 h. Anhydrous potassium carbonate (40 mg) was added to the reaction mixture, which was then stirred for a further 20 min. The resulting colorless precipitate was obtained by evaporation and dried in vacuo (yield; 87%). The obtained colorless product (10 mmol) was dissolved in anhydrous ethanol (50 ml), then a current of dry ammonia, dried with calcium chloride passed into the reaction mixture at room temperature for about 6 h. The reaction mixture was evaporated to dryness. Pure compound was obtained by crystallization from dichloromethane. Crystals suitable for X-ray analysis were obatined by slow evaporation of an ethanol solution after one week.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(4S,5S)-2-(2-Fluorophenyl)-1,3-dioxolane-4,5-dicarboxamide top
Crystal data top
C11H11FN2O4F(000) = 528
Mr = 254.22Dx = 1.529 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 4.8760 (5) Åθ = 9–12°
b = 9.1290 (7) ŵ = 0.13 mm1
c = 24.8160 (9) ÅT = 294 K
V = 1104.63 (15) Å3Block, colorless
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
898 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.978, Tmax = 0.987l = 030
2157 measured reflections3 standard reflections every 120 min
1301 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.002P)2 + 1.775P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1301 reflectionsΔρmax = 0.27 e Å3
164 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Crystal data top
C11H11FN2O4V = 1104.63 (15) Å3
Mr = 254.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8760 (5) ŵ = 0.13 mm1
b = 9.1290 (7) ÅT = 294 K
c = 24.8160 (9) Å0.40 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
898 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.072
Tmin = 0.978, Tmax = 0.9873 standard reflections every 120 min
2157 measured reflections intensity decay: none
1301 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
1301 reflectionsΔρmin = 0.23 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6898 (8)0.3384 (4)0.36430 (13)0.0497 (10)
O20.9373 (9)0.5438 (3)0.37339 (12)0.0489 (10)
O31.1580 (8)0.2201 (5)0.44108 (17)0.0576 (11)
O40.7161 (10)0.6057 (4)0.50750 (13)0.0599 (12)
N10.7627 (11)0.0954 (4)0.44684 (15)0.0513 (12)
H1A0.84500.01440.45400.062*
H1B0.58660.09790.44490.062*
N20.5605 (12)0.6946 (5)0.42850 (18)0.0681 (16)
H2A0.45290.75610.44410.082*
H2B0.56740.69050.39390.082*
F10.4814 (11)0.6150 (5)0.30682 (15)0.1054 (16)
C10.6335 (15)0.5470 (7)0.2681 (2)0.0633 (18)
C20.572 (2)0.5797 (8)0.2158 (3)0.083 (2)
H20.43530.64720.20760.099*
C30.715 (2)0.5109 (8)0.1758 (3)0.088 (3)
H30.67000.52740.13990.105*
C40.9265 (19)0.4170 (9)0.1887 (2)0.095 (3)
H41.02860.37310.16150.114*
C50.9875 (19)0.3878 (8)0.2426 (2)0.076 (2)
H51.12810.32300.25110.092*
C60.8410 (14)0.4542 (6)0.2832 (2)0.0539 (16)
C70.9126 (13)0.4196 (6)0.34082 (18)0.0466 (13)
H71.08180.36170.34230.056*
C80.7392 (14)0.3487 (5)0.42137 (18)0.0461 (14)
H80.56440.35070.44090.055*
C90.8871 (13)0.4968 (5)0.42764 (19)0.0470 (14)
H91.06170.48260.44650.056*
C100.9067 (11)0.2163 (6)0.4389 (2)0.0407 (12)
C110.7142 (14)0.6068 (5)0.4576 (2)0.0492 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.056 (2)0.0459 (19)0.0467 (19)0.007 (2)0.009 (2)0.0041 (16)
O20.059 (2)0.0420 (18)0.0451 (19)0.007 (2)0.006 (2)0.0011 (15)
O30.038 (2)0.059 (2)0.075 (3)0.006 (2)0.003 (2)0.007 (2)
O40.079 (3)0.054 (2)0.046 (2)0.016 (3)0.003 (2)0.0063 (17)
N10.055 (3)0.044 (2)0.055 (2)0.001 (3)0.009 (3)0.008 (2)
N20.093 (4)0.060 (3)0.052 (3)0.020 (4)0.000 (3)0.004 (2)
F10.106 (4)0.128 (4)0.082 (3)0.045 (4)0.016 (3)0.000 (3)
C10.071 (5)0.066 (4)0.054 (3)0.003 (4)0.003 (3)0.005 (3)
C20.106 (6)0.072 (4)0.070 (4)0.004 (5)0.022 (5)0.017 (4)
C30.118 (7)0.091 (5)0.053 (4)0.021 (6)0.021 (5)0.021 (4)
C40.108 (6)0.134 (7)0.043 (3)0.003 (7)0.000 (4)0.005 (4)
C50.088 (5)0.087 (5)0.054 (4)0.010 (5)0.009 (4)0.010 (3)
C60.068 (4)0.048 (3)0.046 (3)0.003 (3)0.000 (3)0.005 (2)
C70.048 (3)0.047 (3)0.045 (3)0.002 (3)0.001 (3)0.000 (2)
C80.063 (4)0.037 (2)0.038 (3)0.003 (3)0.002 (3)0.002 (2)
C90.056 (4)0.042 (3)0.043 (3)0.001 (3)0.002 (3)0.003 (2)
C100.045 (3)0.039 (3)0.038 (3)0.001 (3)0.001 (3)0.002 (2)
C110.062 (4)0.039 (3)0.047 (3)0.009 (3)0.002 (3)0.006 (2)
Geometric parameters (Å, º) top
O1—C71.438 (6)C3—C41.378 (11)
O1—C81.440 (5)C3—H30.9300
O2—C71.398 (5)C4—H40.9300
O2—C91.434 (5)C5—C41.396 (8)
O3—C101.227 (6)C5—H50.9300
O4—C111.240 (5)C6—C11.372 (8)
N1—C101.323 (6)C6—C51.376 (8)
N1—H1A0.8600C7—C61.505 (7)
N1—H1B0.8600C7—H70.9800
N2—H2A0.8600C8—H80.9800
N2—H2B0.8600C9—C81.540 (7)
F1—C11.363 (7)C9—H90.9800
C2—C11.366 (7)C10—C81.522 (7)
C2—H20.9300C11—N21.313 (7)
C3—C21.367 (10)C11—C91.507 (7)
C7—O1—C8103.8 (4)C5—C6—C7118.9 (6)
C7—O2—C9106.6 (3)O1—C7—C6108.5 (5)
C10—N1—H1A120.0O1—C7—H7110.1
C10—N1—H1B120.0O2—C7—O1104.4 (4)
H1A—N1—H1B120.0O2—C7—C6113.5 (4)
C11—N2—H2A120.0O2—C7—H7110.1
C11—N2—H2B120.0C6—C7—H7110.1
H2A—N2—H2B120.0O1—C8—C10108.6 (4)
F1—C1—C2116.8 (7)O1—C8—C9103.6 (4)
F1—C1—C6119.4 (5)O1—C8—H8109.9
C2—C1—C6123.9 (7)C9—C8—H8109.9
C1—C2—C3118.5 (7)C10—C8—C9114.6 (5)
C1—C2—H2120.8C10—C8—H8109.9
C3—C2—H2120.8O2—C9—C8104.3 (4)
C2—C3—C4119.9 (6)O2—C9—C11111.0 (4)
C2—C3—H3120.0O2—C9—H9109.8
C4—C3—H3120.0C8—C9—H9109.8
C3—C4—C5120.1 (7)C11—C9—C8111.9 (5)
C3—C4—H4120.0C11—C9—H9109.8
C5—C4—H4120.0O3—C10—N1123.2 (6)
C6—C5—C4120.5 (7)O3—C10—C8121.8 (5)
C6—C5—H5119.8O4—C11—N2123.9 (6)
C4—C5—H5119.8O4—C11—C9118.9 (5)
C1—C6—C5117.1 (6)N1—C10—C8114.8 (4)
C1—C6—C7124.1 (5)N2—C11—C9117.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.323.089 (4)149
N1—H1B···O3ii0.862.373.164 (4)153
N2—H2A···O4iii0.862.092.944 (5)172
N2—H2B···F10.862.313.130 (4)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H11FN2O4
Mr254.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)4.8760 (5), 9.1290 (7), 24.8160 (9)
V3)1104.63 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2157, 1301, 898
Rint0.072
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.125, 1.00
No. of reflections1301
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.323.089 (4)149
N1—H1B···O3ii0.862.373.164 (4)153
N2—H2A···O4iii0.862.092.944 (5)172
N2—H2B···F10.862.313.130 (4)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds