metal-organic compounds
Bis(di-2-pyridylmethanediol-κ3N,O,N′)copper(II) DL-tartrate
aCollege of Mechanical & Materials Engineering, Three Gorges University, Yichang 443002, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com
The reaction of di-2-pyridyl ketone with copper dichloride dihydrate and tartaric acid in water afforded the title compound, [Cu(C11H10N2O2)2]C4H4O6. The CuII atom lies on an inversion center N,O,N′-chelated by two di-2-pyridylmethanediol ligands in a tetragonally distorted octahedral geometry. The tartrate anion is also located on an inversion center and has disordered hydroxyl groups, each with an occupancy factor of 0.5. The hydroxyl groups of the complex cation are hydrogen bonded to the carboxylate groups of the anion, thus connecting the two building units.
Related literature
For backgroung on di-2-pyridylketone complexes, see: Deveson et al. (1996); Sommerer et al. (1993); Wang et al. (1986).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808034983/hy2156sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034983/hy2156Isup2.hkl
A mixture of di-2-pyridylketone (0.184 g, 1 mmol), CuCl2.2H2O (0.067 g, 0.5 mmol), tartaric acid (0.075 g, 0.5 mmol) and water (18 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture was cooled to 298 K, blue crystals of the title compound were obtained.
All H atoms were positioned geometrically. Aromatic H atoms were refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The other H atoms were fixed in the refinements, with Uiso(H) = 1.2Ueq(C,O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The hydroxyl groups (O5 and O6) of the tartrate anion are half-occupied. The disordered H atoms attached to C13 have been omitted. [Symmetry codes: (i) 2 - x, -y, -z; (ii) 1 - x, 1 - y, 1 - z.] |
[Cu(C11H10N2O2)2]C4H4O6 | Z = 1 |
Mr = 616.03 | F(000) = 317 |
Triclinic, P1 | Dx = 1.602 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7893 (8) Å | Cell parameters from 1352 reflections |
b = 8.1068 (8) Å | θ = 2.8–26.5° |
c = 11.3136 (12) Å | µ = 0.92 mm−1 |
α = 105.973 (1)° | T = 293 K |
β = 90.431 (1)° | Prism, blue |
γ = 110.584 (1)° | 0.45 × 0.30 × 0.18 mm |
V = 638.65 (11) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 2235 independent reflections |
Radiation source: fine-focus sealed tube | 1978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.726, Tmax = 0.850 | k = −9→8 |
3231 measured reflections | l = −13→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.5737P] where P = (Fo2 + 2Fc2)/3 |
2235 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(C11H10N2O2)2]C4H4O6 | γ = 110.584 (1)° |
Mr = 616.03 | V = 638.65 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7893 (8) Å | Mo Kα radiation |
b = 8.1068 (8) Å | µ = 0.92 mm−1 |
c = 11.3136 (12) Å | T = 293 K |
α = 105.973 (1)° | 0.45 × 0.30 × 0.18 mm |
β = 90.431 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 2235 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1978 reflections with I > 2σ(I) |
Tmin = 0.726, Tmax = 0.850 | Rint = 0.015 |
3231 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.37 e Å−3 |
2235 reflections | Δρmin = −0.31 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 1.0000 | 0.0000 | 0.0000 | 0.03430 (17) | |
N1 | 0.9447 (3) | 0.0410 (3) | 0.1761 (2) | 0.0337 (5) | |
N2 | 0.8085 (3) | 0.1020 (3) | −0.0329 (2) | 0.0357 (5) | |
O1 | 1.1369 (3) | 0.3273 (3) | 0.09003 (17) | 0.0394 (5) | |
H1A | 1.2267 | 0.3677 | 0.1473 | 0.047* | |
O2 | 1.0017 (3) | 0.5166 (3) | 0.21831 (19) | 0.0488 (6) | |
H2A | 1.0963 | 0.5631 | 0.2671 | 0.059* | |
O3 | 0.4119 (4) | 0.4426 (5) | 0.2591 (2) | 0.0951 (11) | |
O4 | 0.2982 (5) | 0.6254 (5) | 0.3782 (3) | 0.1005 (13) | |
O5 | 0.7064 (6) | 0.5609 (6) | 0.4214 (4) | 0.0507 (11) | 0.50 |
H5 | 0.6847 | 0.5143 | 0.3468 | 0.061* | 0.50 |
O6 | 0.5874 (7) | 0.7540 (6) | 0.5538 (4) | 0.0569 (12) | 0.50 |
H6 | 0.5146 | 0.7973 | 0.5366 | 0.068* | 0.50 |
C1 | 0.9098 (4) | −0.0858 (4) | 0.2372 (3) | 0.0411 (7) | |
H1 | 0.9154 | −0.2004 | 0.1977 | 0.049* | |
C2 | 0.8658 (5) | −0.0499 (5) | 0.3569 (3) | 0.0506 (8) | |
H2 | 0.8416 | −0.1391 | 0.3979 | 0.061* | |
C3 | 0.8583 (5) | 0.1207 (5) | 0.4150 (3) | 0.0538 (9) | |
H3 | 0.8274 | 0.1468 | 0.4955 | 0.065* | |
C4 | 0.8970 (4) | 0.2526 (5) | 0.3533 (3) | 0.0459 (8) | |
H4 | 0.8936 | 0.3685 | 0.3915 | 0.055* | |
C5 | 0.9407 (4) | 0.2086 (4) | 0.2340 (2) | 0.0339 (6) | |
C6 | 0.9820 (4) | 0.3391 (4) | 0.1516 (3) | 0.0361 (6) | |
C7 | 0.8205 (4) | 0.2618 (4) | 0.0498 (3) | 0.0365 (6) | |
C8 | 0.6957 (4) | 0.3441 (4) | 0.0418 (3) | 0.0472 (8) | |
H8 | 0.7037 | 0.4522 | 0.1017 | 0.057* | |
C9 | 0.5585 (4) | 0.2637 (5) | −0.0563 (3) | 0.0540 (9) | |
H9 | 0.4729 | 0.3174 | −0.0638 | 0.065* | |
C10 | 0.5493 (4) | 0.1036 (5) | −0.1432 (3) | 0.0483 (8) | |
H10 | 0.4593 | 0.0492 | −0.2111 | 0.058* | |
C11 | 0.6747 (4) | 0.0247 (4) | −0.1282 (3) | 0.0420 (7) | |
H11 | 0.6665 | −0.0854 | −0.1858 | 0.050* | |
C12 | 0.4060 (4) | 0.5461 (4) | 0.3591 (3) | 0.0436 (7) | |
C13 | 0.5422 (4) | 0.5732 (4) | 0.4673 (3) | 0.0406 (7) | |
H13A | 0.5713 | 0.6994 | 0.5271 | 0.049* | 0.50 |
H13B | 0.6568 | 0.5597 | 0.4349 | 0.049* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0397 (3) | 0.0388 (3) | 0.0277 (3) | 0.0214 (2) | 0.0000 (2) | 0.0060 (2) |
N1 | 0.0388 (13) | 0.0359 (13) | 0.0302 (12) | 0.0188 (11) | 0.0011 (10) | 0.0092 (10) |
N2 | 0.0385 (13) | 0.0404 (13) | 0.0289 (12) | 0.0186 (11) | −0.0017 (10) | 0.0063 (10) |
O1 | 0.0425 (11) | 0.0413 (11) | 0.0322 (10) | 0.0143 (9) | −0.0019 (9) | 0.0090 (9) |
O2 | 0.0607 (14) | 0.0365 (12) | 0.0458 (13) | 0.0235 (10) | −0.0110 (11) | 0.0002 (9) |
O3 | 0.0785 (19) | 0.152 (3) | 0.0442 (15) | 0.076 (2) | −0.0195 (14) | −0.0292 (17) |
O4 | 0.130 (3) | 0.121 (3) | 0.0594 (18) | 0.100 (2) | −0.0409 (17) | −0.0290 (17) |
O5 | 0.041 (2) | 0.062 (3) | 0.051 (3) | 0.019 (2) | 0.001 (2) | 0.019 (2) |
O6 | 0.068 (3) | 0.043 (3) | 0.047 (3) | 0.011 (2) | −0.012 (2) | 0.006 (2) |
C1 | 0.0428 (17) | 0.0410 (17) | 0.0433 (17) | 0.0191 (14) | 0.0003 (14) | 0.0136 (14) |
C2 | 0.053 (2) | 0.062 (2) | 0.0462 (19) | 0.0234 (17) | 0.0046 (15) | 0.0292 (17) |
C3 | 0.062 (2) | 0.078 (2) | 0.0307 (16) | 0.0362 (19) | 0.0097 (15) | 0.0165 (17) |
C4 | 0.0552 (19) | 0.0545 (19) | 0.0335 (16) | 0.0310 (16) | 0.0035 (14) | 0.0077 (14) |
C5 | 0.0353 (15) | 0.0404 (16) | 0.0290 (14) | 0.0200 (13) | −0.0005 (12) | 0.0070 (12) |
C6 | 0.0447 (16) | 0.0324 (15) | 0.0325 (15) | 0.0193 (13) | 0.0014 (13) | 0.0053 (12) |
C7 | 0.0409 (16) | 0.0378 (16) | 0.0357 (16) | 0.0178 (13) | 0.0031 (13) | 0.0143 (13) |
C8 | 0.0534 (19) | 0.0406 (17) | 0.054 (2) | 0.0253 (15) | 0.0002 (16) | 0.0138 (15) |
C9 | 0.0451 (19) | 0.058 (2) | 0.069 (2) | 0.0278 (17) | −0.0049 (17) | 0.0218 (18) |
C10 | 0.0428 (17) | 0.057 (2) | 0.0441 (18) | 0.0197 (16) | −0.0083 (14) | 0.0121 (16) |
C11 | 0.0409 (17) | 0.0451 (17) | 0.0363 (16) | 0.0159 (14) | −0.0037 (13) | 0.0062 (13) |
C12 | 0.0466 (18) | 0.0448 (18) | 0.0353 (17) | 0.0162 (15) | 0.0008 (14) | 0.0062 (14) |
C13 | 0.0396 (16) | 0.0404 (17) | 0.0375 (16) | 0.0135 (13) | −0.0019 (13) | 0.0066 (13) |
Cu1—N1i | 2.003 (2) | C1—C2 | 1.377 (4) |
Cu1—N1 | 2.003 (2) | C1—H1 | 0.9300 |
Cu1—N2i | 2.019 (2) | C2—C3 | 1.380 (5) |
Cu1—N2 | 2.019 (2) | C2—H2 | 0.9300 |
Cu1—O1i | 2.3920 (19) | C3—C4 | 1.382 (5) |
Cu1—O1 | 2.3920 (19) | C3—H3 | 0.9300 |
N1—C1 | 1.344 (4) | C4—C5 | 1.375 (4) |
N1—C5 | 1.348 (3) | C4—H4 | 0.9300 |
N2—C11 | 1.339 (4) | C5—C6 | 1.549 (4) |
N2—C7 | 1.345 (4) | C6—C7 | 1.526 (4) |
O1—C6 | 1.417 (3) | C7—C8 | 1.373 (4) |
O1—H1A | 0.8554 | C8—C9 | 1.376 (5) |
O2—C6 | 1.382 (3) | C8—H8 | 0.9300 |
O2—H2A | 0.8209 | C9—C10 | 1.374 (5) |
O3—C12 | 1.222 (4) | C9—H9 | 0.9300 |
O4—C12 | 1.213 (4) | C10—C11 | 1.374 (4) |
O5—C13 | 1.409 (5) | C10—H10 | 0.9300 |
O5—H5 | 0.8134 | C11—H11 | 0.9300 |
O5—H13B | 0.4145 | C12—C13 | 1.530 (4) |
O6—C13 | 1.440 (5) | C13—C13ii | 1.527 (6) |
O6—H6 | 0.8117 | C13—H13A | 1.0044 |
O6—H13A | 0.4359 | C13—H13B | 0.9970 |
N1i—Cu1—N1 | 180.0 | N1—C5—C4 | 121.9 (3) |
N1i—Cu1—N2i | 88.92 (9) | N1—C5—C6 | 113.5 (2) |
N1—Cu1—N2i | 91.08 (9) | C4—C5—C6 | 124.6 (3) |
N1i—Cu1—N2 | 91.08 (9) | O2—C6—O1 | 113.9 (2) |
N1—Cu1—N2 | 88.92 (9) | O2—C6—C7 | 109.4 (2) |
N2i—Cu1—N2 | 180.0 | O1—C6—C7 | 105.5 (2) |
N1i—Cu1—O1i | 75.89 (8) | O2—C6—C5 | 111.9 (2) |
N1—Cu1—O1i | 104.11 (8) | O1—C6—C5 | 108.2 (2) |
N2i—Cu1—O1i | 73.63 (8) | C7—C6—C5 | 107.6 (2) |
N2—Cu1—O1i | 106.37 (8) | N2—C7—C8 | 122.0 (3) |
N1i—Cu1—O1 | 104.11 (8) | N2—C7—C6 | 113.9 (2) |
N1—Cu1—O1 | 75.89 (8) | C8—C7—C6 | 124.1 (3) |
N2i—Cu1—O1 | 106.37 (8) | C7—C8—C9 | 118.8 (3) |
N2—Cu1—O1 | 73.63 (8) | C7—C8—H8 | 120.6 |
O1i—Cu1—O1 | 180.00 (10) | C9—C8—H8 | 120.6 |
C1—N1—C5 | 119.4 (2) | C10—C9—C8 | 119.4 (3) |
C1—N1—Cu1 | 124.79 (19) | C10—C9—H9 | 120.3 |
C5—N1—Cu1 | 115.84 (18) | C8—C9—H9 | 120.3 |
C11—N2—C7 | 118.8 (2) | C9—C10—C11 | 119.1 (3) |
C11—N2—Cu1 | 125.7 (2) | C9—C10—H10 | 120.5 |
C7—N2—Cu1 | 115.45 (18) | C11—C10—H10 | 120.5 |
C6—O1—Cu1 | 93.97 (15) | N2—C11—C10 | 121.8 (3) |
C6—O1—H1A | 105.5 | N2—C11—H11 | 119.1 |
Cu1—O1—H1A | 116.8 | C10—C11—H11 | 119.1 |
C6—O2—H2A | 109.5 | O4—C12—O3 | 124.4 (3) |
C13—O5—H5 | 108.0 | O4—C12—C13 | 118.5 (3) |
C13—O5—H13B | 5.1 | O3—C12—C13 | 117.1 (3) |
H5—O5—H13B | 107.4 | O5—C13—O6 | 107.9 (3) |
C13—O6—H6 | 108.0 | O5—C13—C12 | 108.8 (3) |
C13—O6—H13A | 2.7 | O6—C13—C12 | 110.1 (3) |
H6—O6—H13A | 105.4 | O5—C13—C13ii | 110.6 (3) |
N1—C1—C2 | 121.5 (3) | O6—C13—C13ii | 109.6 (3) |
N1—C1—H1 | 119.3 | C12—C13—C13ii | 109.9 (3) |
C2—C1—H1 | 119.3 | O5—C13—H13A | 108.8 |
C1—C2—C3 | 119.0 (3) | O6—C13—H13A | 1.2 |
C1—C2—H2 | 120.5 | C12—C13—H13A | 109.0 |
C3—C2—H2 | 120.5 | C13ii—C13—H13A | 109.7 |
C2—C3—C4 | 119.8 (3) | O5—C13—H13B | 2.1 |
C2—C3—H3 | 120.1 | O6—C13—H13B | 109.5 |
C4—C3—H3 | 120.1 | C12—C13—H13B | 109.1 |
C5—C4—C3 | 118.5 (3) | C13ii—C13—H13B | 108.6 |
C5—C4—H4 | 120.7 | H13A—C13—H13B | 110.5 |
C3—C4—H4 | 120.7 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3iii | 0.85 | 1.73 | 2.582 (3) | 178 |
O2—H2A···O4iii | 0.82 | 1.84 | 2.648 (3) | 170 |
O5—H5···O3 | 0.82 | 2.15 | 2.641 (5) | 119 |
O6—H6···O4 | 0.82 | 2.22 | 2.693 (5) | 118 |
C2—H2···O5iv | 0.93 | 2.38 | 3.249 (6) | 156 |
C3—H3···O4ii | 0.93 | 2.50 | 3.217 (4) | 134 |
C4—H4···O5 | 0.93 | 2.45 | 3.258 (5) | 146 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H10N2O2)2]C4H4O6 |
Mr | 616.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.7893 (8), 8.1068 (8), 11.3136 (12) |
α, β, γ (°) | 105.973 (1), 90.431 (1), 110.584 (1) |
V (Å3) | 638.65 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.92 |
Crystal size (mm) | 0.45 × 0.30 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.726, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3231, 2235, 1978 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.091, 1.04 |
No. of reflections | 2235 |
No. of parameters | 196 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.31 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 2.003 (2) | Cu1—O1 | 2.3920 (19) |
Cu1—N2 | 2.019 (2) | ||
N1—Cu1—N2i | 91.08 (9) | N2—Cu1—O1i | 106.37 (8) |
N1—Cu1—N2 | 88.92 (9) | N1—Cu1—O1 | 75.89 (8) |
N1—Cu1—O1i | 104.11 (8) | N2—Cu1—O1 | 73.63 (8) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3ii | 0.85 | 1.73 | 2.582 (3) | 178 |
O2—H2A···O4ii | 0.82 | 1.84 | 2.648 (3) | 170 |
O5—H5···O3 | 0.82 | 2.15 | 2.641 (5) | 119 |
O6—H6···O4 | 0.82 | 2.22 | 2.693 (5) | 118 |
C2—H2···O5iii | 0.93 | 2.38 | 3.249 (6) | 156 |
C3—H3···O4iv | 0.93 | 2.50 | 3.217 (4) | 134 |
C4—H4···O5 | 0.93 | 2.45 | 3.258 (5) | 146 |
Symmetry codes: (ii) x+1, y, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Key Project of the Chinese Ministry of Education (grant No. 208143) and the Important Project of Hubei Provincial Education Office (09HB81).
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deveson, A. C., Heath, S. L., Harding, C. J. & Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173–3177. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. & Jacobson, R. A. (1993). Inorg. Chim. Acta, 210, 173–176. CSD CrossRef CAS Web of Science Google Scholar
Wang, S. L., Richardson, J. W., Briggs, S. J. & Jacobson, R. A. (1986). Inorg. Chim. Acta, 111, 67–72. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Di-2-pyridylketone (dpk) functions either as a bidentate N,N'-donor or as a tridentate N,O,N'-donor towards metal ions, depending on the reaction medium used in the synthesis of the complexes (Deveson et al., 1996), and several mononuclear and polynuclear transition metal–dpk complexes have been reported (Sommerer et al., 1993; Wang et al., 1986). The structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to metal.
In the title compound, two dipyridin-2-yl-methanediol ligands, each in a tridentate fashion, are bonded to the CuII atom lying on an inversion center (Fig. 1). The pyridyl N atoms are strongly coordinated to the metal in the equatorial plane, while the hydroxyl groups are relatively weakly coordinated in the axial positions (Table 1). The two Cu—O(hydroxy) bonds [2.392 (2) Å], being in a trans arrangement, significantly exceed the Cu—N bond distances, a feature which can be attributed to the Jahn-Teller effect and usually manifests in d9 metal systems. The tartrate anion is located on an inversion center with disordered hydroxyl groups, each has an occupancy factor of 0.5. The hydroxyl groups of the complex cation as donors are involved in hydrogen bonds with the tartrate anion (Table 2).