Experimental
Crystal data
[Cu(C11H10N2O2)2]C4H4O6 Mr = 616.03 Triclinic, ![[P \overline 1]](teximages/hy2156fi1.gif) a = 7.7893 (8) Å b = 8.1068 (8) Å c = 11.3136 (12) Å α = 105.973 (1)° β = 90.431 (1)° γ = 110.584 (1)° V = 638.65 (11) Å3 Z = 1 Mo Kα radiation μ = 0.92 mm−1 T = 293 (2) K 0.45 × 0.30 × 0.18 mm
|
Data collection
Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ) Tmin = 0.726, Tmax = 0.850 3231 measured reflections 2235 independent reflections 1978 reflections with I > 2σ(I) Rint = 0.015
|
Cu1—N1 | 2.003 (2) | Cu1—N2 | 2.019 (2) | Cu1—O1 | 2.3920 (19) | | N1—Cu1—N2i | 91.08 (9) | N1—Cu1—N2 | 88.92 (9) | N1—Cu1—O1i | 104.11 (8) | N2—Cu1—O1i | 106.37 (8) | N1—Cu1—O1 | 75.89 (8) | N2—Cu1—O1 | 73.63 (8) | Symmetry code: (i) -x+2, -y, -z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O1—H1A⋯O3ii | 0.85 | 1.73 | 2.582 (3) | 178 | O2—H2A⋯O4ii | 0.82 | 1.84 | 2.648 (3) | 170 | O5—H5⋯O3 | 0.82 | 2.15 | 2.641 (5) | 119 | O6—H6⋯O4 | 0.82 | 2.22 | 2.693 (5) | 118 | C2—H2⋯O5iii | 0.93 | 2.38 | 3.249 (6) | 156 | C3—H3⋯O4iv | 0.93 | 2.50 | 3.217 (4) | 134 | C4—H4⋯O5 | 0.93 | 2.45 | 3.258 (5) | 146 | Symmetry codes: (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1. | |
Data collection: SMART (Bruker, 2007
); cell refinement: SAINT (Bruker, 2007
); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
A mixture of di-2-pyridylketone (0.184 g, 1 mmol), CuCl2.2H2O (0.067 g, 0.5 mmol), tartaric acid (0.075 g, 0.5 mmol) and water (18 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture was cooled to 298 K, blue crystals of the title compound were obtained.
All H atoms were positioned geometrically. Aromatic H atoms were refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The other H atoms were fixed in the refinements, with Uiso(H) = 1.2Ueq(C,O).
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Bis(di-2-pyridylmethanediol-
κ3N,
O,
N')copper(II) tartrate
top Crystal data top [Cu(C11H10N2O2)2]C4H4O6 | Z = 1 |
Mr = 616.03 | F(000) = 317 |
Triclinic, P1 | Dx = 1.602 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7893 (8) Å | Cell parameters from 1352 reflections |
b = 8.1068 (8) Å | θ = 2.8–26.5° |
c = 11.3136 (12) Å | µ = 0.92 mm−1 |
α = 105.973 (1)° | T = 293 K |
β = 90.431 (1)° | Prism, blue |
γ = 110.584 (1)° | 0.45 × 0.30 × 0.18 mm |
V = 638.65 (11) Å3 | |
Data collection top Bruker SMART APEX CCD area-detector diffractometer | 2235 independent reflections |
Radiation source: fine-focus sealed tube | 1978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.726, Tmax = 0.850 | k = −9→8 |
3231 measured reflections | l = −13→11 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.5737P] where P = (Fo2 + 2Fc2)/3 |
2235 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Crystal data top [Cu(C11H10N2O2)2]C4H4O6 | γ = 110.584 (1)° |
Mr = 616.03 | V = 638.65 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7893 (8) Å | Mo Kα radiation |
b = 8.1068 (8) Å | µ = 0.92 mm−1 |
c = 11.3136 (12) Å | T = 293 K |
α = 105.973 (1)° | 0.45 × 0.30 × 0.18 mm |
β = 90.431 (1)° | |
Data collection top Bruker SMART APEX CCD area-detector diffractometer | 2235 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1978 reflections with I > 2σ(I) |
Tmin = 0.726, Tmax = 0.850 | Rint = 0.015 |
3231 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.37 e Å−3 |
2235 reflections | Δρmin = −0.31 e Å−3 |
196 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Cu1 | 1.0000 | 0.0000 | 0.0000 | 0.03430 (17) | |
N1 | 0.9447 (3) | 0.0410 (3) | 0.1761 (2) | 0.0337 (5) | |
N2 | 0.8085 (3) | 0.1020 (3) | −0.0329 (2) | 0.0357 (5) | |
O1 | 1.1369 (3) | 0.3273 (3) | 0.09003 (17) | 0.0394 (5) | |
H1A | 1.2267 | 0.3677 | 0.1473 | 0.047* | |
O2 | 1.0017 (3) | 0.5166 (3) | 0.21831 (19) | 0.0488 (6) | |
H2A | 1.0963 | 0.5631 | 0.2671 | 0.059* | |
O3 | 0.4119 (4) | 0.4426 (5) | 0.2591 (2) | 0.0951 (11) | |
O4 | 0.2982 (5) | 0.6254 (5) | 0.3782 (3) | 0.1005 (13) | |
O5 | 0.7064 (6) | 0.5609 (6) | 0.4214 (4) | 0.0507 (11) | 0.50 |
H5 | 0.6847 | 0.5143 | 0.3468 | 0.061* | 0.50 |
O6 | 0.5874 (7) | 0.7540 (6) | 0.5538 (4) | 0.0569 (12) | 0.50 |
H6 | 0.5146 | 0.7973 | 0.5366 | 0.068* | 0.50 |
C1 | 0.9098 (4) | −0.0858 (4) | 0.2372 (3) | 0.0411 (7) | |
H1 | 0.9154 | −0.2004 | 0.1977 | 0.049* | |
C2 | 0.8658 (5) | −0.0499 (5) | 0.3569 (3) | 0.0506 (8) | |
H2 | 0.8416 | −0.1391 | 0.3979 | 0.061* | |
C3 | 0.8583 (5) | 0.1207 (5) | 0.4150 (3) | 0.0538 (9) | |
H3 | 0.8274 | 0.1468 | 0.4955 | 0.065* | |
C4 | 0.8970 (4) | 0.2526 (5) | 0.3533 (3) | 0.0459 (8) | |
H4 | 0.8936 | 0.3685 | 0.3915 | 0.055* | |
C5 | 0.9407 (4) | 0.2086 (4) | 0.2340 (2) | 0.0339 (6) | |
C6 | 0.9820 (4) | 0.3391 (4) | 0.1516 (3) | 0.0361 (6) | |
C7 | 0.8205 (4) | 0.2618 (4) | 0.0498 (3) | 0.0365 (6) | |
C8 | 0.6957 (4) | 0.3441 (4) | 0.0418 (3) | 0.0472 (8) | |
H8 | 0.7037 | 0.4522 | 0.1017 | 0.057* | |
C9 | 0.5585 (4) | 0.2637 (5) | −0.0563 (3) | 0.0540 (9) | |
H9 | 0.4729 | 0.3174 | −0.0638 | 0.065* | |
C10 | 0.5493 (4) | 0.1036 (5) | −0.1432 (3) | 0.0483 (8) | |
H10 | 0.4593 | 0.0492 | −0.2111 | 0.058* | |
C11 | 0.6747 (4) | 0.0247 (4) | −0.1282 (3) | 0.0420 (7) | |
H11 | 0.6665 | −0.0854 | −0.1858 | 0.050* | |
C12 | 0.4060 (4) | 0.5461 (4) | 0.3591 (3) | 0.0436 (7) | |
C13 | 0.5422 (4) | 0.5732 (4) | 0.4673 (3) | 0.0406 (7) | |
H13A | 0.5713 | 0.6994 | 0.5271 | 0.049* | 0.50 |
H13B | 0.6568 | 0.5597 | 0.4349 | 0.049* | 0.50 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0397 (3) | 0.0388 (3) | 0.0277 (3) | 0.0214 (2) | 0.0000 (2) | 0.0060 (2) |
N1 | 0.0388 (13) | 0.0359 (13) | 0.0302 (12) | 0.0188 (11) | 0.0011 (10) | 0.0092 (10) |
N2 | 0.0385 (13) | 0.0404 (13) | 0.0289 (12) | 0.0186 (11) | −0.0017 (10) | 0.0063 (10) |
O1 | 0.0425 (11) | 0.0413 (11) | 0.0322 (10) | 0.0143 (9) | −0.0019 (9) | 0.0090 (9) |
O2 | 0.0607 (14) | 0.0365 (12) | 0.0458 (13) | 0.0235 (10) | −0.0110 (11) | 0.0002 (9) |
O3 | 0.0785 (19) | 0.152 (3) | 0.0442 (15) | 0.076 (2) | −0.0195 (14) | −0.0292 (17) |
O4 | 0.130 (3) | 0.121 (3) | 0.0594 (18) | 0.100 (2) | −0.0409 (17) | −0.0290 (17) |
O5 | 0.041 (2) | 0.062 (3) | 0.051 (3) | 0.019 (2) | 0.001 (2) | 0.019 (2) |
O6 | 0.068 (3) | 0.043 (3) | 0.047 (3) | 0.011 (2) | −0.012 (2) | 0.006 (2) |
C1 | 0.0428 (17) | 0.0410 (17) | 0.0433 (17) | 0.0191 (14) | 0.0003 (14) | 0.0136 (14) |
C2 | 0.053 (2) | 0.062 (2) | 0.0462 (19) | 0.0234 (17) | 0.0046 (15) | 0.0292 (17) |
C3 | 0.062 (2) | 0.078 (2) | 0.0307 (16) | 0.0362 (19) | 0.0097 (15) | 0.0165 (17) |
C4 | 0.0552 (19) | 0.0545 (19) | 0.0335 (16) | 0.0310 (16) | 0.0035 (14) | 0.0077 (14) |
C5 | 0.0353 (15) | 0.0404 (16) | 0.0290 (14) | 0.0200 (13) | −0.0005 (12) | 0.0070 (12) |
C6 | 0.0447 (16) | 0.0324 (15) | 0.0325 (15) | 0.0193 (13) | 0.0014 (13) | 0.0053 (12) |
C7 | 0.0409 (16) | 0.0378 (16) | 0.0357 (16) | 0.0178 (13) | 0.0031 (13) | 0.0143 (13) |
C8 | 0.0534 (19) | 0.0406 (17) | 0.054 (2) | 0.0253 (15) | 0.0002 (16) | 0.0138 (15) |
C9 | 0.0451 (19) | 0.058 (2) | 0.069 (2) | 0.0278 (17) | −0.0049 (17) | 0.0218 (18) |
C10 | 0.0428 (17) | 0.057 (2) | 0.0441 (18) | 0.0197 (16) | −0.0083 (14) | 0.0121 (16) |
C11 | 0.0409 (17) | 0.0451 (17) | 0.0363 (16) | 0.0159 (14) | −0.0037 (13) | 0.0062 (13) |
C12 | 0.0466 (18) | 0.0448 (18) | 0.0353 (17) | 0.0162 (15) | 0.0008 (14) | 0.0062 (14) |
C13 | 0.0396 (16) | 0.0404 (17) | 0.0375 (16) | 0.0135 (13) | −0.0019 (13) | 0.0066 (13) |
Geometric parameters (Å, º) top Cu1—N1i | 2.003 (2) | C1—C2 | 1.377 (4) |
Cu1—N1 | 2.003 (2) | C1—H1 | 0.9300 |
Cu1—N2i | 2.019 (2) | C2—C3 | 1.380 (5) |
Cu1—N2 | 2.019 (2) | C2—H2 | 0.9300 |
Cu1—O1i | 2.3920 (19) | C3—C4 | 1.382 (5) |
Cu1—O1 | 2.3920 (19) | C3—H3 | 0.9300 |
N1—C1 | 1.344 (4) | C4—C5 | 1.375 (4) |
N1—C5 | 1.348 (3) | C4—H4 | 0.9300 |
N2—C11 | 1.339 (4) | C5—C6 | 1.549 (4) |
N2—C7 | 1.345 (4) | C6—C7 | 1.526 (4) |
O1—C6 | 1.417 (3) | C7—C8 | 1.373 (4) |
O1—H1A | 0.8554 | C8—C9 | 1.376 (5) |
O2—C6 | 1.382 (3) | C8—H8 | 0.9300 |
O2—H2A | 0.8209 | C9—C10 | 1.374 (5) |
O3—C12 | 1.222 (4) | C9—H9 | 0.9300 |
O4—C12 | 1.213 (4) | C10—C11 | 1.374 (4) |
O5—C13 | 1.409 (5) | C10—H10 | 0.9300 |
O5—H5 | 0.8134 | C11—H11 | 0.9300 |
O5—H13B | 0.4145 | C12—C13 | 1.530 (4) |
O6—C13 | 1.440 (5) | C13—C13ii | 1.527 (6) |
O6—H6 | 0.8117 | C13—H13A | 1.0044 |
O6—H13A | 0.4359 | C13—H13B | 0.9970 |
| | | |
N1i—Cu1—N1 | 180.0 | N1—C5—C4 | 121.9 (3) |
N1i—Cu1—N2i | 88.92 (9) | N1—C5—C6 | 113.5 (2) |
N1—Cu1—N2i | 91.08 (9) | C4—C5—C6 | 124.6 (3) |
N1i—Cu1—N2 | 91.08 (9) | O2—C6—O1 | 113.9 (2) |
N1—Cu1—N2 | 88.92 (9) | O2—C6—C7 | 109.4 (2) |
N2i—Cu1—N2 | 180.0 | O1—C6—C7 | 105.5 (2) |
N1i—Cu1—O1i | 75.89 (8) | O2—C6—C5 | 111.9 (2) |
N1—Cu1—O1i | 104.11 (8) | O1—C6—C5 | 108.2 (2) |
N2i—Cu1—O1i | 73.63 (8) | C7—C6—C5 | 107.6 (2) |
N2—Cu1—O1i | 106.37 (8) | N2—C7—C8 | 122.0 (3) |
N1i—Cu1—O1 | 104.11 (8) | N2—C7—C6 | 113.9 (2) |
N1—Cu1—O1 | 75.89 (8) | C8—C7—C6 | 124.1 (3) |
N2i—Cu1—O1 | 106.37 (8) | C7—C8—C9 | 118.8 (3) |
N2—Cu1—O1 | 73.63 (8) | C7—C8—H8 | 120.6 |
O1i—Cu1—O1 | 180.00 (10) | C9—C8—H8 | 120.6 |
C1—N1—C5 | 119.4 (2) | C10—C9—C8 | 119.4 (3) |
C1—N1—Cu1 | 124.79 (19) | C10—C9—H9 | 120.3 |
C5—N1—Cu1 | 115.84 (18) | C8—C9—H9 | 120.3 |
C11—N2—C7 | 118.8 (2) | C9—C10—C11 | 119.1 (3) |
C11—N2—Cu1 | 125.7 (2) | C9—C10—H10 | 120.5 |
C7—N2—Cu1 | 115.45 (18) | C11—C10—H10 | 120.5 |
C6—O1—Cu1 | 93.97 (15) | N2—C11—C10 | 121.8 (3) |
C6—O1—H1A | 105.5 | N2—C11—H11 | 119.1 |
Cu1—O1—H1A | 116.8 | C10—C11—H11 | 119.1 |
C6—O2—H2A | 109.5 | O4—C12—O3 | 124.4 (3) |
C13—O5—H5 | 108.0 | O4—C12—C13 | 118.5 (3) |
C13—O5—H13B | 5.1 | O3—C12—C13 | 117.1 (3) |
H5—O5—H13B | 107.4 | O5—C13—O6 | 107.9 (3) |
C13—O6—H6 | 108.0 | O5—C13—C12 | 108.8 (3) |
C13—O6—H13A | 2.7 | O6—C13—C12 | 110.1 (3) |
H6—O6—H13A | 105.4 | O5—C13—C13ii | 110.6 (3) |
N1—C1—C2 | 121.5 (3) | O6—C13—C13ii | 109.6 (3) |
N1—C1—H1 | 119.3 | C12—C13—C13ii | 109.9 (3) |
C2—C1—H1 | 119.3 | O5—C13—H13A | 108.8 |
C1—C2—C3 | 119.0 (3) | O6—C13—H13A | 1.2 |
C1—C2—H2 | 120.5 | C12—C13—H13A | 109.0 |
C3—C2—H2 | 120.5 | C13ii—C13—H13A | 109.7 |
C2—C3—C4 | 119.8 (3) | O5—C13—H13B | 2.1 |
C2—C3—H3 | 120.1 | O6—C13—H13B | 109.5 |
C4—C3—H3 | 120.1 | C12—C13—H13B | 109.1 |
C5—C4—C3 | 118.5 (3) | C13ii—C13—H13B | 108.6 |
C5—C4—H4 | 120.7 | H13A—C13—H13B | 110.5 |
C3—C4—H4 | 120.7 | | |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3iii | 0.85 | 1.73 | 2.582 (3) | 178 |
O2—H2A···O4iii | 0.82 | 1.84 | 2.648 (3) | 170 |
O5—H5···O3 | 0.82 | 2.15 | 2.641 (5) | 119 |
O6—H6···O4 | 0.82 | 2.22 | 2.693 (5) | 118 |
C2—H2···O5iv | 0.93 | 2.38 | 3.249 (6) | 156 |
C3—H3···O4ii | 0.93 | 2.50 | 3.217 (4) | 134 |
C4—H4···O5 | 0.93 | 2.45 | 3.258 (5) | 146 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y−1, z. |
Experimental details
Crystal data |
Chemical formula | [Cu(C11H10N2O2)2]C4H4O6 |
Mr | 616.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.7893 (8), 8.1068 (8), 11.3136 (12) |
α, β, γ (°) | 105.973 (1), 90.431 (1), 110.584 (1) |
V (Å3) | 638.65 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.92 |
Crystal size (mm) | 0.45 × 0.30 × 0.18 |
|
Data collection |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.726, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3231, 2235, 1978 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.597 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.091, 1.04 |
No. of reflections | 2235 |
No. of parameters | 196 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.31 |
Selected geometric parameters (Å, º) topCu1—N1 | 2.003 (2) | Cu1—O1 | 2.3920 (19) |
Cu1—N2 | 2.019 (2) | | |
| | | |
N1—Cu1—N2i | 91.08 (9) | N2—Cu1—O1i | 106.37 (8) |
N1—Cu1—N2 | 88.92 (9) | N1—Cu1—O1 | 75.89 (8) |
N1—Cu1—O1i | 104.11 (8) | N2—Cu1—O1 | 73.63 (8) |
Symmetry code: (i) −x+2, −y, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3ii | 0.85 | 1.73 | 2.582 (3) | 178 |
O2—H2A···O4ii | 0.82 | 1.84 | 2.648 (3) | 170 |
O5—H5···O3 | 0.82 | 2.15 | 2.641 (5) | 119 |
O6—H6···O4 | 0.82 | 2.22 | 2.693 (5) | 118 |
C2—H2···O5iii | 0.93 | 2.38 | 3.249 (6) | 156 |
C3—H3···O4iv | 0.93 | 2.50 | 3.217 (4) | 134 |
C4—H4···O5 | 0.93 | 2.45 | 3.258 (5) | 146 |
Symmetry codes: (ii) x+1, y, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Key Project of the Chinese Ministry of Education (grant No. 208143) and the Important Project of Hubei Provincial Education Office (09HB81).
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deveson, A. C., Heath, S. L., Harding, C. J. & Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173–3177. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. & Jacobson, R. A. (1993). Inorg. Chim. Acta, 210, 173–176. CSD CrossRef CAS Web of Science Google Scholar
Wang, S. L., Richardson, J. W., Briggs, S. J. & Jacobson, R. A. (1986). Inorg. Chim. Acta, 111, 67–72. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Di-2-pyridylketone (dpk) functions either as a bidentate N,N'-donor or as a tridentate N,O,N'-donor towards metal ions, depending on the reaction medium used in the synthesis of the complexes (Deveson et al., 1996), and several mononuclear and polynuclear transition metal–dpk complexes have been reported (Sommerer et al., 1993; Wang et al., 1986). The structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to metal.
In the title compound, two dipyridin-2-yl-methanediol ligands, each in a tridentate fashion, are bonded to the CuII atom lying on an inversion center (Fig. 1). The pyridyl N atoms are strongly coordinated to the metal in the equatorial plane, while the hydroxyl groups are relatively weakly coordinated in the axial positions (Table 1). The two Cu—O(hydroxy) bonds [2.392 (2) Å], being in a trans arrangement, significantly exceed the Cu—N bond distances, a feature which can be attributed to the Jahn-Teller effect and usually manifests in d9 metal systems. The tartrate anion is located on an inversion center with disordered hydroxyl groups, each has an occupancy factor of 0.5. The hydroxyl groups of the complex cation as donors are involved in hydrogen bonds with the tartrate anion (Table 2).