metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′-bi­pyridine-κ2N,N′)copper(I)]-μ-cyanido-κ2C:N-[(2,2′-bi­pyridine-κ2N,N′)copper(I)]-μ-thio­cyanato-κ2S:N]

aCollege of Mechanical and Material Engineering, Functional Materials Research Institue, Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 23 October 2008; accepted 14 November 2008; online 20 November 2008)

The title compound, [Cu2(CN)(SCN)(C10H8N2)2]n, contains two crystallographically independent CuI atoms, each in a distorted tetra­hedral geometry. Each Cu atom is coordinated by a bidentate chelating 2,2′-bipyridine ligand. A bridging cyanide anion links the two Cu(2,2′-bipyridine) units to form a binuclear unit. Adjacent binuclear units are connected by a thio­cyanate anion into a one-dimensional helical chain along [010]. The cyanide anion is disordered, with each site occupied by both C and N atoms in an occupancy ratio of 0.61 (5):0.39 (5). The S atom of the thio­cyanate anion is also disordered over two sites, with occupancy factors of 0.61 (3) and 0.39 (3). There are ππ inter­actions between the pyridyl rings of neighbouring chains [centroid–centroid distance = 3.82 (1) Å].

Related literature

For general background, see: Hibble & Chippindale (2005[Hibble, S.-J. & Chippindale, A.-M. (2005). Z. Anorg. Allg. Chem. 631, 542-545.]); Krautscheid et al. (1998[Krautscheid, H., Emig, N., Klaassen, N. & Seringer, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3071-3077.]); Ren et al. (2001[Ren, C.-X., Zhu, H.-L., Yang, G. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 85-90.]). For related structures, see: Liu et al. (2006[Liu, X., Guo, G.-C., Fu, M.-L., Liu, X.-H., Wang, M.-S. & Huang, J.-S. (2006). Inorg. Chem. 45, 3679-3685.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CN)(SCN)(C10H8N2)2]

  • Mr = 523.55

  • Monoclinic, P 21 /n

  • a = 14.977 (12) Å

  • b = 9.356 (7) Å

  • c = 17.065 (14) Å

  • β = 111.532 (12)°

  • V = 2224 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 293 (2) K

  • 0.45 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.521, Tmax = 0.868 (expected range = 0.490–0.817)

  • 16410 measured reflections

  • 5033 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.132

  • S = 1.02

  • 5033 reflections

  • 285 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—C21A 1.903 (5)
Cu1—N6i 1.964 (5)
Cu1—N1 2.111 (4)
Cu1—N2 2.119 (4)
Cu2—N5A 1.889 (5)
Cu2—N3 2.091 (4)
Cu2—N4 2.094 (4)
Cu2—S1A 2.465 (15)
Cu2—S1B 2.33 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition-metal cyanide or thiocyanate complexes have recently attracted much interest because they can be used as linear linkers in crystal engineering. With their ambidexterous characters the SCN-and CN- anions are expected to be involved in a variety of coordination complexes. The syntheses and crystal structures of the complexes of CuSCN and CuCN with various donor ligands like substituted pyridines have been fully investigated (Hibble & Chippindale, 2005; Krautscheid et al., 1998; Ren et al., 2001). However, only a few complexes containing both SCN- and CN- anions have been reported recently (Liu et al., 2006). In this paper, we report the hydrothermal synthesis and structure of a new one-dimensional helical chain formed by both thiocyanate and cyanide anions.

The title compound contains a binuclear unit consisting of two CuI atoms bridged by a cyanide anion. Each Cu atom is coordinated by a bidentate chelating 2,2'-bipyridine (2,2'-bipy) molecule (Fig. 1). Both CuI atoms have a distorted tetrahedral geometry (Table 1). The bidentate SCN- ligand links adjacent binuclear [Cu2(2,2'-bpy)2(CN)] units into a one-dimensional helical chain running along the b axis. The intrachain Cu···Cu distance across the cyanide bridge is 4.9263 (3) Å. The helical chain is decorated by 2,2'-bipy ligands towards the lateral of the chain (Fig. 2). There are ππ interactions between the pyridyl rings of neighboring chains [centroid–centroid distance = 3.82 (1)Å]. The cyanide anion is disordered with each site occupied by both C and N atoms in an occupacy ratio of 0.61 (5):0.39 (5). The S atom of the thiocyanate anion is also disordered over two sites with occupacy factors of 0.61 (3) and 0.39 (3).

Related literature top

For general background, see: Hibble & Chippindale (2005); Krautscheid et al. (1998); Ren et al. (2001). For related structures, see: Liu et al. (2006).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. A mixture of CuSCN (0.07 g, 0.60 mmol), NaCN (0.05 g, 1 mmol), 2,2'-bipy (0.06 g, 0.40 mmol) and water (10 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture was cooled to 298 K, red crystals of the title compound were obtained (yield 45%). IR (KBr pellet, cm-1): 3434(m), 2102(s), 1592(m), 1467(m), 1437(s), 1152(w), 759(s), 735(m).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.]
[Figure 2] Fig. 2. One-dimensional helical chain in the title compound.
catena-Poly[[(2,2'-bipyridine-κ2N,N')copper(I)]-µ- cyanido-κ2C:N-[(2,2'-bipyridine- κ2N,N')copper(I)]-µ-thiocyanato-κ2S:N] top
Crystal data top
[Cu2(CN)(SCN)(C10H8N2)2]F(000) = 1056
Mr = 523.55Dx = 1.563 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1688 reflections
a = 14.977 (12) Åθ = 2.5–27.5°
b = 9.356 (7) ŵ = 2.03 mm1
c = 17.065 (14) ÅT = 293 K
β = 111.532 (12)°Prism, red
V = 2224 (3) Å30.45 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5033 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.521, Tmax = 0.868k = 1211
16410 measured reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
5033 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu2(CN)(SCN)(C10H8N2)2]V = 2224 (3) Å3
Mr = 523.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.977 (12) ŵ = 2.03 mm1
b = 9.356 (7) ÅT = 293 K
c = 17.065 (14) Å0.45 × 0.12 × 0.10 mm
β = 111.532 (12)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5033 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3039 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.868Rint = 0.067
16410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.02Δρmax = 0.77 e Å3
5033 reflectionsΔρmin = 0.43 e Å3
285 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.67204 (4)0.70063 (6)0.09388 (4)0.04969 (19)
Cu20.94638 (4)0.38679 (6)0.12252 (4)0.0539 (2)
S1A1.0245 (11)0.2228 (17)0.2410 (10)0.0513 (17)0.61 (3)
S1B1.0036 (11)0.209 (3)0.2245 (12)0.0513 (17)0.39 (3)
N60.9046 (3)0.2050 (4)0.3342 (3)0.0567 (11)
C220.9503 (3)0.2109 (5)0.2928 (3)0.0436 (11)
N10.6847 (3)0.9214 (4)0.0748 (3)0.0497 (10)
N20.5776 (3)0.7276 (4)0.0328 (2)0.0432 (9)
N30.9649 (3)0.2707 (4)0.0249 (3)0.0541 (10)
N41.0819 (3)0.4562 (4)0.1291 (3)0.0495 (10)
C10.7345 (4)1.0173 (6)0.1319 (4)0.0710 (16)
H10.77370.98390.18470.085*
C20.7316 (4)1.1623 (6)0.1179 (4)0.0701 (17)
H20.76711.22490.16020.084*
C30.6755 (4)1.2114 (6)0.0408 (4)0.0769 (18)
H30.67321.30860.02870.092*
C40.6225 (4)1.1165 (5)0.0190 (4)0.0633 (15)
H40.58251.14930.07160.076*
C50.6282 (3)0.9721 (5)0.0015 (3)0.0448 (11)
C60.5712 (3)0.8629 (5)0.0623 (3)0.0437 (11)
C70.5128 (4)0.8949 (6)0.1445 (3)0.0662 (15)
H70.50930.98820.16420.079*
C80.4604 (4)0.7896 (6)0.1966 (3)0.0787 (18)
H80.42070.81070.25160.094*
C90.4672 (4)0.6532 (6)0.1670 (4)0.0708 (17)
H90.43270.57940.20130.085*
C100.5263 (3)0.6271 (5)0.0849 (3)0.0526 (12)
H100.53070.53390.06490.063*
C110.9012 (5)0.1844 (6)0.0297 (4)0.0720 (16)
H110.84080.17580.02640.086*
C120.9201 (6)0.1071 (6)0.0909 (4)0.086 (2)
H120.87370.04780.12770.103*
C131.0086 (6)0.1203 (7)0.0958 (4)0.091 (2)
H131.02340.06930.13620.109*
C141.0758 (5)0.2089 (6)0.0409 (4)0.0738 (17)
H141.13620.21850.04390.089*
C151.0525 (4)0.2834 (5)0.0187 (3)0.0510 (12)
C161.1191 (3)0.3817 (5)0.0804 (3)0.0508 (12)
C171.2147 (4)0.4011 (7)0.0900 (4)0.0759 (17)
H171.24070.34970.05680.091*
C181.2706 (4)0.4969 (8)0.1488 (4)0.091 (2)
H181.33420.51120.15470.110*
C191.2339 (4)0.5700 (7)0.1979 (4)0.0810 (19)
H191.27120.63390.23840.097*
C201.1390 (4)0.5467 (6)0.1858 (4)0.0646 (15)
H201.11310.59730.21940.078*
N5A0.8391 (3)0.4961 (4)0.1195 (3)0.0479 (14)0.61 (5)
C21A0.7751 (3)0.5696 (4)0.1130 (3)0.0426 (13)0.61 (5)
N5B0.7751 (3)0.5696 (4)0.1130 (3)0.0426 (13)0.39 (5)
C21B0.8391 (3)0.4961 (4)0.1195 (3)0.0479 (14)0.39 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0544 (4)0.0509 (4)0.0433 (4)0.0116 (3)0.0172 (3)0.0052 (3)
Cu20.0502 (3)0.0548 (4)0.0629 (4)0.0054 (3)0.0283 (3)0.0000 (3)
S1A0.040 (4)0.068 (3)0.045 (4)0.015 (3)0.015 (3)0.014 (3)
S1B0.040 (4)0.068 (3)0.045 (4)0.015 (3)0.015 (3)0.014 (3)
N60.059 (3)0.064 (3)0.047 (3)0.013 (2)0.020 (2)0.003 (2)
C220.043 (2)0.042 (3)0.038 (3)0.003 (2)0.007 (2)0.003 (2)
N10.044 (2)0.048 (2)0.047 (3)0.0014 (18)0.0034 (19)0.0004 (19)
N20.050 (2)0.040 (2)0.039 (2)0.0045 (17)0.0158 (18)0.0020 (17)
N30.067 (3)0.054 (3)0.042 (2)0.004 (2)0.020 (2)0.002 (2)
N40.051 (2)0.046 (2)0.057 (3)0.0012 (19)0.025 (2)0.007 (2)
C10.062 (3)0.060 (4)0.065 (4)0.001 (3)0.008 (3)0.001 (3)
C20.056 (3)0.056 (3)0.080 (4)0.009 (3)0.003 (3)0.010 (3)
C30.065 (3)0.047 (3)0.098 (5)0.005 (3)0.006 (4)0.005 (3)
C40.059 (3)0.043 (3)0.075 (4)0.003 (2)0.009 (3)0.010 (3)
C50.037 (2)0.048 (3)0.050 (3)0.006 (2)0.016 (2)0.003 (2)
C60.046 (2)0.045 (3)0.040 (3)0.007 (2)0.016 (2)0.004 (2)
C70.092 (4)0.045 (3)0.043 (3)0.007 (3)0.003 (3)0.009 (3)
C80.101 (4)0.070 (4)0.035 (3)0.011 (3)0.010 (3)0.000 (3)
C90.086 (4)0.052 (3)0.048 (3)0.001 (3)0.006 (3)0.007 (3)
C100.069 (3)0.038 (3)0.046 (3)0.003 (2)0.015 (3)0.000 (2)
C110.088 (4)0.065 (4)0.061 (4)0.001 (3)0.025 (3)0.002 (3)
C120.130 (6)0.064 (4)0.063 (4)0.016 (4)0.034 (4)0.010 (3)
C130.160 (7)0.062 (4)0.069 (5)0.004 (4)0.064 (5)0.007 (3)
C140.110 (5)0.059 (4)0.080 (4)0.009 (3)0.066 (4)0.006 (3)
C150.072 (3)0.045 (3)0.046 (3)0.015 (2)0.033 (3)0.014 (2)
C160.054 (3)0.054 (3)0.050 (3)0.015 (2)0.026 (3)0.019 (3)
C170.059 (3)0.113 (5)0.066 (4)0.015 (3)0.035 (3)0.012 (4)
C180.042 (3)0.151 (7)0.078 (5)0.010 (4)0.019 (3)0.002 (5)
C190.055 (3)0.107 (5)0.081 (5)0.015 (3)0.025 (3)0.002 (4)
C200.069 (3)0.063 (4)0.070 (4)0.009 (3)0.036 (3)0.005 (3)
N5A0.052 (3)0.043 (3)0.046 (3)0.005 (2)0.014 (2)0.002 (2)
C21A0.043 (3)0.040 (3)0.043 (3)0.004 (2)0.013 (2)0.0001 (19)
N5B0.043 (3)0.040 (3)0.043 (3)0.004 (2)0.013 (2)0.0001 (19)
C21B0.052 (3)0.043 (3)0.046 (3)0.005 (2)0.014 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu1—C21A1.903 (5)C4—H40.9300
Cu1—N6i1.964 (5)C5—C61.483 (6)
Cu1—N12.111 (4)C6—C71.387 (6)
Cu1—N22.119 (4)C7—C81.365 (7)
Cu2—N5A1.889 (5)C7—H70.9300
Cu2—N32.091 (4)C8—C91.363 (7)
Cu2—N42.094 (4)C8—H80.9300
Cu2—S1A2.465 (15)C9—C101.376 (7)
Cu2—S1B2.33 (2)C9—H90.9300
S1A—C221.658 (14)C10—H100.9300
S1B—C221.64 (2)C11—C121.382 (8)
N6—C221.152 (6)C11—H110.9300
N6—Cu1ii1.964 (4)C12—C131.364 (9)
N1—C11.334 (6)C12—H120.9300
N1—C51.351 (6)C13—C141.373 (9)
N2—C101.329 (6)C13—H130.9300
N2—C61.353 (5)C14—C151.379 (7)
N3—C111.332 (7)C14—H140.9300
N3—C151.359 (6)C15—C161.476 (7)
N4—C201.333 (6)C16—C171.392 (7)
N4—C161.353 (6)C17—C181.377 (8)
C1—C21.375 (7)C17—H170.9300
C1—H10.9300C18—C191.344 (8)
C2—C31.356 (8)C18—H180.9300
C2—H20.9300C19—C201.377 (7)
C3—C41.365 (7)C19—H190.9300
C3—H30.9300C20—H200.9300
C4—C51.380 (6)N5A—C21A1.151 (5)
C21A—Cu1—N6i121.98 (18)N2—C6—C7120.8 (4)
C21A—Cu1—N1122.94 (16)N2—C6—C5116.1 (4)
N6i—Cu1—N1100.50 (16)C7—C6—C5123.2 (4)
C21A—Cu1—N2116.55 (16)C8—C7—C6120.1 (5)
N6i—Cu1—N2108.09 (16)C8—C7—H7120.0
N1—Cu1—N277.86 (14)C6—C7—H7120.0
N5A—Cu2—N3128.31 (17)C9—C8—C7119.2 (5)
N5A—Cu2—N4129.13 (16)C9—C8—H8120.4
N3—Cu2—N478.14 (17)C7—C8—H8120.4
N5A—Cu2—S1B118.8 (6)C8—C9—C10118.4 (5)
N3—Cu2—S1B96.1 (6)C8—C9—H9120.8
N4—Cu2—S1B95.6 (5)C10—C9—H9120.8
N5A—Cu2—S1A120.1 (3)N2—C10—C9123.6 (5)
N3—Cu2—S1A99.7 (4)N2—C10—H10118.2
N4—Cu2—S1A89.5 (4)C9—C10—H10118.2
S1B—Cu2—S1A7.9 (7)N3—C11—C12123.6 (6)
C22—S1A—Cu2105.7 (7)N3—C11—H11118.2
C22—S1B—Cu2112.6 (11)C12—C11—H11118.2
C22—N6—Cu1ii178.3 (4)C13—C12—C11118.1 (7)
N6—C22—S1B172.6 (7)C13—C12—H12120.9
N6—C22—S1A174.8 (7)C11—C12—H12120.9
C1—N1—C5116.9 (4)C12—C13—C14119.9 (6)
C1—N1—Cu1127.1 (4)C12—C13—H13120.0
C5—N1—Cu1115.6 (3)C14—C13—H13120.0
C10—N2—C6117.9 (4)C13—C14—C15119.2 (6)
C10—N2—Cu1127.2 (3)C13—C14—H14120.4
C6—N2—Cu1114.9 (3)C15—C14—H14120.4
C11—N3—C15117.6 (5)N3—C15—C14121.7 (5)
C11—N3—Cu2126.9 (4)N3—C15—C16114.7 (4)
C15—N3—Cu2115.5 (3)C14—C15—C16123.6 (5)
C20—N4—C16118.3 (4)N4—C16—C17119.9 (5)
C20—N4—Cu2125.9 (3)N4—C16—C15115.9 (4)
C16—N4—Cu2114.7 (3)C17—C16—C15124.2 (5)
N1—C1—C2124.3 (5)C18—C17—C16119.7 (6)
N1—C1—H1117.9C18—C17—H17120.2
C2—C1—H1117.9C16—C17—H17120.2
C3—C2—C1118.1 (5)C19—C18—C17120.4 (6)
C3—C2—H2120.9C19—C18—H18119.8
C1—C2—H2120.9C17—C18—H18119.8
C2—C3—C4119.2 (5)C18—C19—C20117.6 (6)
C2—C3—H3120.4C18—C19—H19121.2
C4—C3—H3120.4C20—C19—H19121.2
C3—C4—C5120.2 (5)N4—C20—C19124.1 (5)
C3—C4—H4119.9N4—C20—H20117.9
C5—C4—H4119.9C19—C20—H20117.9
N1—C5—C4121.3 (4)C21A—N5A—Cu2174.5 (4)
N1—C5—C6115.4 (4)N5A—C21A—Cu1174.5 (4)
C4—C5—C6123.3 (4)
N5A—Cu2—S1A—C2212.1 (10)C1—N1—C5—C6177.9 (4)
N3—Cu2—S1A—C22133.7 (7)Cu1—N1—C5—C64.4 (5)
N4—Cu2—S1A—C22148.5 (8)C3—C4—C5—N10.9 (8)
S1B—Cu2—S1A—C2271 (6)C3—C4—C5—C6178.5 (5)
N5A—Cu2—S1B—C227.1 (12)C10—N2—C6—C70.0 (7)
N3—Cu2—S1B—C22147.4 (9)Cu1—N2—C6—C7179.2 (4)
N4—Cu2—S1B—C22134.0 (9)C10—N2—C6—C5178.8 (4)
S1A—Cu2—S1B—C2295 (7)Cu1—N2—C6—C51.9 (5)
Cu2—S1B—C22—S1A109 (7)N1—C5—C6—N24.2 (6)
Cu2—S1A—C22—S1B59 (6)C4—C5—C6—N2173.6 (4)
C21A—Cu1—N1—C170.8 (5)N1—C5—C6—C7177.0 (5)
N6i—Cu1—N1—C168.9 (4)C4—C5—C6—C75.2 (7)
N2—Cu1—N1—C1175.3 (5)N2—C6—C7—C80.4 (8)
C21A—Cu1—N1—C5116.5 (3)C5—C6—C7—C8178.4 (5)
N6i—Cu1—N1—C5103.8 (3)C6—C7—C8—C90.6 (9)
N2—Cu1—N1—C52.6 (3)C7—C8—C9—C100.5 (9)
C21A—Cu1—N2—C1058.0 (4)C6—N2—C10—C90.1 (7)
N6i—Cu1—N2—C1083.9 (4)Cu1—N2—C10—C9179.3 (4)
N1—Cu1—N2—C10178.9 (4)C8—C9—C10—N20.1 (9)
C21A—Cu1—N2—C6121.2 (3)C15—N3—C11—C120.7 (8)
N6i—Cu1—N2—C697.0 (3)Cu2—N3—C11—C12177.6 (4)
N1—Cu1—N2—C60.3 (3)N3—C11—C12—C130.2 (10)
N5A—Cu2—N3—C1144.5 (5)C11—C12—C13—C140.2 (10)
N4—Cu2—N3—C11175.5 (4)C12—C13—C14—C150.1 (9)
S1B—Cu2—N3—C1190.0 (6)C11—N3—C15—C140.9 (7)
S1A—Cu2—N3—C1197.1 (6)Cu2—N3—C15—C14177.7 (4)
N5A—Cu2—N3—C15137.1 (3)C11—N3—C15—C16179.4 (4)
N4—Cu2—N3—C156.1 (3)Cu2—N3—C15—C162.1 (5)
S1B—Cu2—N3—C1588.4 (5)C13—C14—C15—N30.5 (8)
S1A—Cu2—N3—C1581.3 (5)C13—C14—C15—C16179.8 (5)
N5A—Cu2—N4—C2052.6 (5)C20—N4—C16—C170.3 (7)
N3—Cu2—N4—C20177.2 (4)Cu2—N4—C16—C17169.0 (4)
S1B—Cu2—N4—C2082.2 (7)C20—N4—C16—C15179.9 (4)
S1A—Cu2—N4—C2077.2 (5)Cu2—N4—C16—C1511.4 (5)
N5A—Cu2—N4—C16139.7 (3)N3—C15—C16—N46.2 (6)
N3—Cu2—N4—C169.5 (3)C14—C15—C16—N4174.0 (5)
S1B—Cu2—N4—C1685.5 (7)N3—C15—C16—C17174.2 (5)
S1A—Cu2—N4—C1690.5 (5)C14—C15—C16—C175.5 (8)
C5—N1—C1—C20.0 (8)N4—C16—C17—C180.3 (8)
Cu1—N1—C1—C2172.6 (4)C15—C16—C17—C18179.2 (5)
N1—C1—C2—C30.9 (9)C16—C17—C18—C191.0 (10)
C1—C2—C3—C41.7 (9)C17—C18—C19—C201.0 (10)
C2—C3—C4—C51.7 (9)C16—N4—C20—C190.4 (8)
C1—N1—C5—C40.0 (7)Cu2—N4—C20—C19167.7 (4)
Cu1—N1—C5—C4173.5 (4)C18—C19—C20—N40.3 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(CN)(SCN)(C10H8N2)2]
Mr523.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.977 (12), 9.356 (7), 17.065 (14)
β (°) 111.532 (12)
V3)2224 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.45 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.521, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
16410, 5033, 3039
Rint0.067
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.132, 1.02
No. of reflections5033
No. of parameters285
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.43

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—C21A1.903 (5)Cu2—N32.091 (4)
Cu1—N6i1.964 (5)Cu2—N42.094 (4)
Cu1—N12.111 (4)Cu2—S1A2.465 (15)
Cu1—N22.119 (4)Cu2—S1B2.33 (2)
Cu2—N5A1.889 (5)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (grant No. NCET-06-0891), the Key Project of the Chinese Ministry of Education (grant No. 208143) and the Important Project of Hubei Provincial Education Office (grant No. 09HB81).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHibble, S.-J. & Chippindale, A.-M. (2005). Z. Anorg. Allg. Chem. 631, 542–545.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrautscheid, H., Emig, N., Klaassen, N. & Seringer, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3071–3077.  Web of Science CSD CrossRef Google Scholar
First citationLiu, X., Guo, G.-C., Fu, M.-L., Liu, X.-H., Wang, M.-S. & Huang, J.-S. (2006). Inorg. Chem. 45, 3679–3685.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRen, C.-X., Zhu, H.-L., Yang, G. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 85–90.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds