organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Cyano­benz­yl)benzamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bJiangsu Pesticide Research Institute Co. Ltd, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 9 October 2008; accepted 28 October 2008; online 8 November 2008)

The title compound, C15H12N2O, is a derivative of 4-(amino­meth­yl)benzonitrile, an important pestcide inter­mediate. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming infinite chains.

Related literature

For general background, see: Blaschke et al. (1976[Blaschke, G., Joergens, R. & Claassen, G. (1976). Arch. Pharm. 309, 258-65.]); Gesing (1989[Gesing, E. (1989). Bayer AG, Germany. DE Patent No. 3 727 126.]). For the synthetic procedure, see: Guo et al. (2008[Guo, L. Q., Ma, H. J., Ni, J. P., Xu, S. C., Liu, L., Wan, Q. & Wang, X. J. (2008). Agrochem. Res. Appl. 12, 15-18.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Monoclinic, P 21 /n

  • a = 5.864 (1) Å

  • b = 27.164 (5) Å

  • c = 7.839 (2) Å

  • β = 91.09 (3)°

  • V = 1248.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.992

  • 2450 measured reflections

  • 2233 independent reflections

  • 1461 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.186

  • S = 1.00

  • 2233 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Oi 0.86 1.99 2.830 (4) 166
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-(4-Cyanobenzyl)benzamide is a derivative of 4-(aminomethyl)benzontrile (Gesing, 1989), which is an important in the synthesis of pestcides as well as of some drugs (Blaschke et al., 1976).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked together to form infinite chains via intermolecular N—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Blaschke et al. (1976); Gesing (1989). For the synthetic procedure, see: Guo et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported by Guo et al. (2008).

Crystals were obtained by dissolving (I) (0.8 g, 3.4 mmol) in dichloromethane (20 ml) and slowly evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-(4-Cyanobenzyl)benzamide top
Crystal data top
C15H12N2OF(000) = 496
Mr = 236.27Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.864 (1) Åθ = 10–13°
b = 27.164 (5) ŵ = 0.08 mm1
c = 7.839 (2) ÅT = 298 K
β = 91.09 (3)°Block, colorless
V = 1248.4 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1461 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 032
Tmin = 0.976, Tmax = 0.992l = 09
2450 measured reflections3 standard reflections every 200 reflections
2233 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
2233 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H12N2OV = 1248.4 (4) Å3
Mr = 236.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.864 (1) ŵ = 0.08 mm1
b = 27.164 (5) ÅT = 298 K
c = 7.839 (2) Å0.30 × 0.20 × 0.10 mm
β = 91.09 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1461 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
2450 measured reflections intensity decay: none
2233 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
2233 reflectionsΔρmin = 0.24 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.3309 (5)0.24546 (11)0.3711 (3)0.0728 (9)
C10.5980 (7)0.02472 (18)0.7639 (6)0.0648 (11)
N10.7125 (8)0.00565 (17)0.8071 (6)0.0976 (15)
N20.0883 (4)0.23194 (10)0.5795 (3)0.0396 (7)
H2A0.02690.24260.67110.048*
C20.4555 (6)0.06509 (14)0.7054 (4)0.0465 (9)
C30.5228 (6)0.11328 (14)0.7289 (4)0.0473 (9)
H3A0.66020.12010.78520.057*
C40.3894 (5)0.15128 (13)0.6701 (4)0.0422 (8)
H4A0.43830.18360.68500.051*
C50.1830 (5)0.14198 (12)0.5889 (4)0.0354 (8)
C60.1169 (6)0.09393 (14)0.5685 (5)0.0514 (9)
H6A0.02240.08730.51460.062*
C70.2468 (7)0.05557 (15)0.6239 (5)0.0571 (10)
H7A0.19710.02340.60770.069*
C80.0315 (5)0.18301 (13)0.5198 (4)0.0431 (8)
H8A0.03840.18280.39630.052*
H8B0.12470.17590.55010.052*
C90.2321 (5)0.26091 (13)0.4974 (4)0.0385 (8)
C100.2683 (5)0.31165 (12)0.5607 (3)0.0332 (7)
C110.1042 (5)0.33738 (13)0.6512 (4)0.0407 (8)
H11A0.03020.32170.68090.049*
C120.1384 (6)0.38530 (14)0.6968 (5)0.0528 (10)
H12A0.02970.40200.75960.063*
C130.3361 (7)0.40892 (15)0.6489 (5)0.0550 (10)
H13A0.35750.44200.67450.066*
C140.5014 (6)0.38324 (16)0.5631 (5)0.0542 (10)
H14A0.63780.39860.53620.065*
C150.4657 (5)0.33607 (14)0.5182 (4)0.0447 (9)
H15A0.57650.31950.45720.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.094 (2)0.0745 (19)0.0522 (15)0.0141 (16)0.0520 (15)0.0124 (14)
C10.052 (3)0.075 (3)0.067 (3)0.006 (2)0.011 (2)0.005 (2)
N10.087 (3)0.079 (3)0.125 (4)0.026 (2)0.026 (3)0.003 (3)
N20.0334 (15)0.0591 (18)0.0267 (13)0.0019 (13)0.0090 (11)0.0020 (12)
C20.044 (2)0.055 (2)0.0412 (19)0.0021 (17)0.0006 (16)0.0035 (16)
C30.0340 (19)0.067 (2)0.0407 (19)0.0052 (17)0.0050 (15)0.0033 (17)
C40.0356 (18)0.053 (2)0.0385 (18)0.0108 (16)0.0028 (14)0.0059 (15)
C50.0255 (16)0.055 (2)0.0256 (15)0.0002 (14)0.0042 (12)0.0041 (13)
C60.038 (2)0.063 (2)0.053 (2)0.0110 (18)0.0145 (17)0.0085 (18)
C70.056 (2)0.050 (2)0.064 (2)0.0027 (19)0.013 (2)0.0099 (19)
C80.0338 (18)0.060 (2)0.0356 (17)0.0021 (16)0.0016 (14)0.0004 (15)
C90.0300 (17)0.061 (2)0.0250 (15)0.0000 (15)0.0120 (13)0.0029 (14)
C100.0218 (15)0.057 (2)0.0206 (14)0.0046 (14)0.0001 (12)0.0082 (13)
C110.0242 (16)0.061 (2)0.0365 (17)0.0016 (15)0.0004 (13)0.0025 (15)
C120.052 (2)0.057 (2)0.049 (2)0.0076 (19)0.0028 (17)0.0064 (18)
C130.057 (2)0.058 (2)0.049 (2)0.011 (2)0.0165 (19)0.0015 (18)
C140.037 (2)0.076 (3)0.049 (2)0.0154 (19)0.0079 (17)0.0077 (19)
C150.0305 (18)0.070 (3)0.0343 (17)0.0034 (17)0.0040 (14)0.0054 (16)
Geometric parameters (Å, º) top
O—C91.230 (4)C7—H7A0.9300
C1—N11.113 (5)C8—H8A0.9700
C1—C21.448 (6)C8—H8B0.9700
N2—C91.329 (4)C9—C101.479 (5)
N2—C81.446 (4)C10—C151.380 (4)
N2—H2A0.8600C10—C111.394 (4)
C2—C31.379 (5)C11—C121.364 (5)
C2—C71.394 (5)C11—H11A0.9300
C3—C41.370 (5)C12—C131.383 (5)
C3—H3A0.9300C12—H12A0.9300
C4—C51.380 (4)C13—C141.380 (5)
C4—H4A0.9300C13—H13A0.9300
C5—C61.370 (5)C14—C151.344 (5)
C5—C81.519 (5)C14—H14A0.9300
C6—C71.357 (5)C15—H15A0.9300
C6—H6A0.9300
N1—C1—C2178.1 (5)N2—C8—H8B108.4
C9—N2—C8122.1 (3)C5—C8—H8B108.4
C9—N2—H2A118.9H8A—C8—H8B107.5
C8—N2—H2A118.9O—C9—N2120.0 (3)
C3—C2—C7118.9 (3)O—C9—C10121.4 (3)
C3—C2—C1121.0 (3)N2—C9—C10118.5 (3)
C7—C2—C1120.1 (3)C15—C10—C11118.2 (3)
C4—C3—C2120.7 (3)C15—C10—C9118.9 (3)
C4—C3—H3A119.7C11—C10—C9122.8 (3)
C2—C3—H3A119.7C12—C11—C10120.8 (3)
C3—C4—C5120.5 (3)C12—C11—H11A119.6
C3—C4—H4A119.8C10—C11—H11A119.6
C5—C4—H4A119.8C11—C12—C13119.4 (4)
C6—C5—C4118.2 (3)C11—C12—H12A120.3
C6—C5—C8119.7 (3)C13—C12—H12A120.3
C4—C5—C8122.1 (3)C14—C13—C12119.9 (4)
C7—C6—C5122.6 (3)C14—C13—H13A120.1
C7—C6—H6A118.7C12—C13—H13A120.1
C5—C6—H6A118.7C15—C14—C13120.1 (3)
C6—C7—C2119.1 (4)C15—C14—H14A119.9
C6—C7—H7A120.4C13—C14—H14A119.9
C2—C7—H7A120.4C14—C15—C10121.5 (3)
N2—C8—C5115.5 (3)C14—C15—H15A119.3
N2—C8—H8A108.4C10—C15—H15A119.3
C5—C8—H8A108.4
C7—C2—C3—C41.3 (5)C8—N2—C9—C10175.9 (3)
C1—C2—C3—C4178.7 (3)O—C9—C10—C1522.3 (5)
C2—C3—C4—C51.2 (5)N2—C9—C10—C15158.1 (3)
C3—C4—C5—C60.3 (5)O—C9—C10—C11152.8 (3)
C3—C4—C5—C8179.2 (3)N2—C9—C10—C1126.8 (4)
C4—C5—C6—C70.4 (5)C15—C10—C11—C120.2 (5)
C8—C5—C6—C7178.5 (3)C9—C10—C11—C12175.4 (3)
C5—C6—C7—C20.2 (6)C10—C11—C12—C131.6 (5)
C3—C2—C7—C60.7 (6)C11—C12—C13—C143.2 (5)
C1—C2—C7—C6179.3 (4)C12—C13—C14—C153.4 (5)
C9—N2—C8—C590.5 (4)C13—C14—C15—C102.1 (5)
C6—C5—C8—N2166.8 (3)C11—C10—C15—C140.4 (5)
C4—C5—C8—N214.4 (4)C9—C10—C15—C14175.8 (3)
C8—N2—C9—O3.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.861.992.830 (4)166
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.864 (1), 27.164 (5), 7.839 (2)
β (°) 91.09 (3)
V3)1248.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2450, 2233, 1461
Rint0.041
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.186, 1.00
No. of reflections2233
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.86001.99002.830 (4)166.00
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Shan Liu, Nanjing University of Technology, for his useful suggestions and guidance, and thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlaschke, G., Joergens, R. & Claassen, G. (1976). Arch. Pharm. 309, 258–65.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGesing, E. (1989). Bayer AG, Germany. DE Patent No. 3 727 126.  Google Scholar
First citationGuo, L. Q., Ma, H. J., Ni, J. P., Xu, S. C., Liu, L., Wan, Q. & Wang, X. J. (2008). Agrochem. Res. Appl. 12, 15–18.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds