organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Benz­yl­oxy)phen­yl]-1-(2-fur­yl)-3-hy­droxy­prop-2-en-1-one

aHubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China, and bCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
*Correspondence e-mail: zcy800204@163.com

(Received 3 November 2008; accepted 7 November 2008; online 13 November 2008)

In the crystal structure of the title compound, C20H16O4, which is in the enol form, the central benzene ring makes dihedral angles of 63.42 (9) and 5.19 (10)° with the phenyl and furan rings, respectively. There is a short strong intra­molecular O—H⋯O hydrogen bond.

Related literature

For hydrogen bonds in 1,3-diketones, see: Bertolasi et al. (1991[Bertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.]); Gilli et al. (2004[Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845-3855.]); Vila et al. (1991[Vila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069-5073.]). For 1,3-diketones as ligands, see: Baskar & Roesky (2005[Baskar, V. & Roesky, P. W. (2005). Z. Anorg. Allg. Chem. 631, 2782-2785.]); Bassett et al. (2004[Bassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc. 126, 9413-9424.]); Jang et al. (2006[Jang, H., Shin, C.-H., Jung, B.-J., Kim, D.-H., Shim, H.-K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718-725.]); Soldatov et al. (2003[Soldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth Des. 3, 1005-1013.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O4

  • Mr = 320.33

  • Triclinic, [P \overline 1]

  • a = 5.8927 (6) Å

  • b = 11.3365 (11) Å

  • c = 13.3039 (13) Å

  • α = 112.111 (3)°

  • β = 96.687 (3)°

  • γ = 98.638 (3)°

  • V = 799.39 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.32 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 6611 measured reflections

  • 3439 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.147

  • S = 0.95

  • 3439 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 1.15 (3) 1.38 (3) 2.5030 (16) 162 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-Diketones in their enolic tautomeric forms have been extensively studied owing to their ability to form strong intermolecular or intramolecular hydrogen bonds (Vila et al., 1991; Bertolasi et al., 1991; Gilli et al., 2004). They are among the most studied ligands in the chemistry of metal complexes and used widely in the chemistry of metallocomplexes (Baskar & Roesky, 2005; Bassett et al., 2004; Jang et al., 2006; Soldatov et al., 2003).

The crystal structure of the title compound, (I), is in the enol form stabilized by an intramolecular hydrogen bond (Fig. 1). The distances of O2—H2 and O3···H2 are 1.15 (3) and 1.38 (3) Å, respectively. The central benzene ring (C8—C13) makes dihedral angles of 63.42 and 5.19° with two aromatic rings (C1—C6) and (C17—O4), respectively. The crystal packing is stabilized by van der Waals forces.

Related literature top

For hydrogen bonds in 1,3-diketones, see: Bertolasi et al. (1991); Gilli et al. (2004); Vila et al. (1991). For 1,3-diketones as ligands, see: Baskar & Roesky (2005); Bassett et al. (2004); Jang et al. (2006); Soldatov et al. (2003).

Experimental top

1-[4-(Benzyloxy)phenyl]ethanone (2.26 g, 0.01 mol), methyl furan-2-carboxylate (1.26 g, 0.01 mol), NaNH2 (0.78 g, 0.02 mol) and dry ether (60 ml) were placed into round bottom flask. The mixture was stirred for 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO3 solution, dried over anhydrous Na2SO4 and was removed by evaporation. The residual solid was recrystallized from an ethanol solution to give the title compound (I) (yield 1.75 g, 54.7%; m.p. 403 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CH2Cl2—EtOH (1:4) solution at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.
3-[4-(Benzyloxy)phenyl]-1-(2-furyl)-3-hydroxyprop-2-en-1-one top
Crystal data top
C20H16O4Z = 2
Mr = 320.33F(000) = 336
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Melting point: 403 K
a = 5.8927 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3365 (11) ÅCell parameters from 1997 reflections
c = 13.3039 (13) Åθ = 3.1–26.1°
α = 112.111 (3)°µ = 0.09 mm1
β = 96.687 (3)°T = 298 K
γ = 98.638 (3)°Block, yellow
V = 799.39 (14) Å30.32 × 0.20 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3439 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.978, Tmax = 0.983k = 1414
6611 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
3439 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H16O4γ = 98.638 (3)°
Mr = 320.33V = 799.39 (14) Å3
Triclinic, P1Z = 2
a = 5.8927 (6) ÅMo Kα radiation
b = 11.3365 (11) ŵ = 0.09 mm1
c = 13.3039 (13) ÅT = 298 K
α = 112.111 (3)°0.32 × 0.20 × 0.12 mm
β = 96.687 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2268 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.078
6611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.18 e Å3
3439 reflectionsΔρmin = 0.29 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1919 (3)0.94140 (17)0.21175 (14)0.0561 (4)
H10.28520.94900.15880.067*
C20.2151 (3)1.01001 (18)0.27760 (15)0.0624 (5)
H20.32291.06360.26860.075*
C30.0791 (3)0.99904 (18)0.35624 (13)0.0628 (5)
H30.09431.04490.40080.075*
C40.0791 (4)0.9200 (2)0.36863 (14)0.0707 (5)
H40.17160.91240.42190.085*
C50.1021 (3)0.85205 (18)0.30303 (14)0.0625 (5)
H50.21000.79860.31240.075*
C60.0332 (3)0.86224 (15)0.22321 (12)0.0470 (4)
C70.0042 (3)0.78860 (17)0.15223 (14)0.0543 (4)
H7A0.12660.79460.10880.065*
H7B0.01330.69750.19760.065*
C80.2985 (3)0.78337 (14)0.01798 (12)0.0437 (4)
C90.1650 (3)0.67956 (17)0.00705 (15)0.0572 (5)
H90.00990.64790.04320.069*
C100.2624 (3)0.62314 (17)0.05756 (14)0.0566 (5)
H100.17080.55300.06410.068*
C110.4923 (3)0.66708 (14)0.11326 (12)0.0430 (4)
C120.6215 (3)0.77425 (15)0.10371 (12)0.0487 (4)
H120.77550.80730.14130.058*
C130.5265 (3)0.83230 (15)0.04000 (13)0.0493 (4)
H130.61550.90470.03570.059*
C140.5877 (3)0.60034 (15)0.17882 (12)0.0459 (4)
C150.8145 (3)0.63971 (16)0.23933 (13)0.0493 (4)
H150.91490.70990.23700.059*
C160.8939 (3)0.57587 (17)0.30329 (13)0.0523 (4)
C171.1263 (3)0.62181 (18)0.37217 (13)0.0561 (4)
C181.2389 (4)0.5838 (2)0.44496 (16)0.0779 (6)
H181.18210.51490.46320.094*
C191.4595 (4)0.6689 (3)0.48793 (17)0.0878 (7)
H191.57670.66710.54020.105*
C201.4681 (4)0.7517 (2)0.43989 (17)0.0821 (7)
H201.59570.81850.45370.099*
O10.22079 (19)0.84506 (10)0.08083 (9)0.0549 (3)
O20.4480 (2)0.49997 (11)0.17879 (10)0.0593 (3)
O30.7661 (2)0.47547 (13)0.30691 (11)0.0682 (4)
O41.2673 (2)0.72692 (13)0.36792 (9)0.0661 (4)
H2A0.573 (4)0.473 (2)0.2360 (18)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0612 (10)0.0584 (11)0.0545 (10)0.0197 (8)0.0132 (8)0.0256 (9)
C20.0691 (11)0.0551 (11)0.0649 (11)0.0249 (9)0.0015 (9)0.0249 (9)
C30.0835 (13)0.0586 (11)0.0460 (10)0.0101 (10)0.0026 (9)0.0268 (9)
C40.0881 (13)0.0858 (15)0.0494 (10)0.0291 (11)0.0207 (10)0.0330 (10)
C50.0706 (11)0.0704 (12)0.0559 (10)0.0315 (9)0.0166 (9)0.0281 (9)
C60.0533 (9)0.0446 (9)0.0408 (8)0.0094 (7)0.0023 (7)0.0167 (7)
C70.0536 (9)0.0518 (10)0.0594 (10)0.0085 (7)0.0032 (8)0.0277 (8)
C80.0538 (9)0.0380 (8)0.0411 (8)0.0099 (7)0.0076 (7)0.0181 (7)
C90.0489 (9)0.0528 (10)0.0709 (11)0.0024 (7)0.0039 (8)0.0354 (9)
C100.0540 (10)0.0505 (10)0.0702 (11)0.0013 (8)0.0000 (8)0.0375 (9)
C110.0491 (8)0.0407 (8)0.0413 (8)0.0096 (7)0.0095 (7)0.0183 (7)
C120.0481 (9)0.0494 (9)0.0481 (9)0.0015 (7)0.0031 (7)0.0239 (8)
C130.0536 (9)0.0434 (9)0.0515 (9)0.0011 (7)0.0056 (7)0.0251 (8)
C140.0568 (9)0.0432 (9)0.0421 (8)0.0121 (7)0.0144 (7)0.0198 (7)
C150.0556 (9)0.0494 (9)0.0468 (9)0.0114 (7)0.0077 (7)0.0239 (8)
C160.0633 (10)0.0554 (11)0.0463 (9)0.0246 (8)0.0171 (8)0.0230 (8)
C170.0650 (10)0.0659 (12)0.0482 (10)0.0312 (9)0.0164 (8)0.0267 (9)
C180.0854 (15)0.1060 (17)0.0697 (12)0.0522 (13)0.0222 (11)0.0510 (12)
C190.0787 (15)0.128 (2)0.0584 (13)0.0552 (14)0.0019 (10)0.0304 (13)
C200.0648 (12)0.0965 (17)0.0662 (13)0.0287 (11)0.0040 (10)0.0124 (12)
O10.0627 (7)0.0467 (7)0.0560 (7)0.0009 (5)0.0054 (5)0.0302 (6)
O20.0605 (7)0.0568 (7)0.0712 (8)0.0060 (6)0.0086 (6)0.0408 (7)
O30.0772 (9)0.0687 (9)0.0799 (9)0.0223 (7)0.0166 (7)0.0498 (7)
O40.0671 (8)0.0683 (9)0.0576 (8)0.0189 (7)0.0014 (6)0.0208 (7)
Geometric parameters (Å, º) top
C1—C61.373 (2)C10—H100.9300
C1—C21.381 (2)C11—C121.390 (2)
C1—H10.9300C11—C141.469 (2)
C2—C31.371 (3)C12—C131.373 (2)
C2—H20.9300C12—H120.9300
C3—C41.369 (3)C13—H130.9300
C3—H30.9300C14—O21.3000 (19)
C4—C51.373 (2)C14—C151.391 (2)
C4—H40.9300C15—C161.393 (2)
C5—C61.382 (2)C15—H150.9300
C5—H50.9300C16—O31.287 (2)
C6—C71.489 (2)C16—C171.456 (3)
C7—O11.4364 (19)C17—C181.347 (2)
C7—H7A0.9700C17—O41.371 (2)
C7—H7B0.9700C18—C191.408 (3)
C8—O11.3583 (17)C18—H180.9300
C8—C91.379 (2)C19—C201.318 (3)
C8—C131.386 (2)C19—H190.9300
C9—C101.374 (2)C20—O41.352 (2)
C9—H90.9300C20—H200.9300
C10—C111.385 (2)O2—H2A1.15 (3)
C6—C1—C2121.06 (16)C10—C11—C14119.56 (13)
C6—C1—H1119.5C12—C11—C14123.34 (14)
C2—C1—H1119.5C13—C12—C11121.39 (14)
C3—C2—C1119.91 (17)C13—C12—H12119.3
C3—C2—H2120.0C11—C12—H12119.3
C1—C2—H2120.0C12—C13—C8120.24 (14)
C4—C3—C2119.52 (16)C12—C13—H13119.9
C4—C3—H3120.2C8—C13—H13119.9
C2—C3—H3120.2O2—C14—C15119.95 (14)
C3—C4—C5120.50 (17)O2—C14—C11116.68 (14)
C3—C4—H4119.8C15—C14—C11123.37 (14)
C5—C4—H4119.8C14—C15—C16121.14 (15)
C4—C5—C6120.71 (17)C14—C15—H15119.4
C4—C5—H5119.6C16—C15—H15119.4
C6—C5—H5119.6O3—C16—C15122.40 (16)
C1—C6—C5118.30 (15)O3—C16—C17116.31 (15)
C1—C6—C7121.80 (15)C15—C16—C17121.28 (16)
C5—C6—C7119.90 (15)C18—C17—O4109.43 (17)
O1—C7—C6107.58 (12)C18—C17—C16133.19 (19)
O1—C7—H7A110.2O4—C17—C16117.37 (14)
C6—C7—H7A110.2C17—C18—C19106.5 (2)
O1—C7—H7B110.2C17—C18—H18126.7
C6—C7—H7B110.2C19—C18—H18126.7
H7A—C7—H7B108.5C20—C19—C18106.89 (19)
O1—C8—C9124.48 (14)C20—C19—H19126.6
O1—C8—C13116.21 (13)C18—C19—H19126.6
C9—C8—C13119.29 (14)C19—C20—O4111.2 (2)
C10—C9—C8119.65 (15)C19—C20—H20124.4
C10—C9—H9120.2O4—C20—H20124.4
C8—C9—H9120.2C8—O1—C7118.05 (11)
C9—C10—C11122.26 (15)C14—O2—H2A99.0 (11)
C9—C10—H10118.9C16—O3—H2A95.5 (9)
C11—C10—H10118.9C20—O4—C17105.94 (16)
C10—C11—C12117.10 (14)
C6—C1—C2—C30.3 (3)C12—C11—C14—O2178.85 (14)
C1—C2—C3—C40.1 (3)C10—C11—C14—C15178.45 (15)
C2—C3—C4—C50.0 (3)C12—C11—C14—C151.4 (2)
C3—C4—C5—C60.1 (3)O2—C14—C15—C162.1 (2)
C2—C1—C6—C50.4 (2)C11—C14—C15—C16177.71 (14)
C2—C1—C6—C7179.38 (15)C14—C15—C16—O32.4 (2)
C4—C5—C6—C10.4 (3)C14—C15—C16—C17176.10 (14)
C4—C5—C6—C7179.47 (17)O3—C16—C17—C183.0 (3)
C1—C6—C7—O1111.01 (17)C15—C16—C17—C18175.63 (18)
C5—C6—C7—O168.82 (19)O3—C16—C17—O4178.65 (13)
O1—C8—C9—C10179.06 (15)C15—C16—C17—O42.7 (2)
C13—C8—C9—C102.5 (3)O4—C17—C18—C190.0 (2)
C8—C9—C10—C110.2 (3)C16—C17—C18—C19178.42 (17)
C9—C10—C11—C121.7 (3)C17—C18—C19—C200.0 (2)
C9—C10—C11—C14178.47 (15)C18—C19—C20—O40.0 (2)
C10—C11—C12—C131.3 (2)C9—C8—O1—C78.7 (2)
C14—C11—C12—C13178.88 (14)C13—C8—O1—C7172.83 (13)
C11—C12—C13—C81.0 (2)C6—C7—O1—C8171.88 (13)
O1—C8—C13—C12178.53 (13)C19—C20—O4—C170.0 (2)
C9—C8—C13—C122.9 (2)C18—C17—O4—C200.02 (19)
C10—C11—C14—O21.3 (2)C16—C17—O4—C20178.72 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O31.15 (3)1.38 (3)2.5030 (16)162 (2)

Experimental details

Crystal data
Chemical formulaC20H16O4
Mr320.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.8927 (6), 11.3365 (11), 13.3039 (13)
α, β, γ (°)112.111 (3), 96.687 (3), 98.638 (3)
V3)799.39 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6611, 3439, 2268
Rint0.078
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.147, 0.95
No. of reflections3439
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O31.15 (3)1.38 (3)2.5030 (16)162 (2)
 

Acknowledgements

The authors are grateful to Hubei Normal University for financial support.

References

First citationBaskar, V. & Roesky, P. W. (2005). Z. Anorg. Allg. Chem. 631, 2782–2785.  Web of Science CSD CrossRef CAS Google Scholar
First citationBassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc. 126, 9413–9424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845–3855.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJang, H., Shin, C.-H., Jung, B.-J., Kim, D.-H., Shim, H.-K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718–725.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth Des. 3, 1005–1013.  Web of Science CSD CrossRef CAS Google Scholar
First citationVila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069–5073.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds