organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(Z)-4-Methyl­benzyl­­idene]-4-nitro­benzohydrazide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 November 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, C15H13N3O3·H2O, the two benzene rings form a dihedral angle of 2.03 (2)°. In the crystal structure, adjacent hydrazide mol­ecules are linked into dimers by water mol­ecules; these dimers are then stacked along the b axis. Inter­molecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds and a ππ stacking inter­action between the nitro­benzene and tolyl rings with a centroid–centroid distance of 3.8208 (3) Å are observed. There is also a short O⋯N contact [2.6824 (7) Å].

Related literature

For related literature on hydrazones, see: Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]). For the biological applications of hydrazides/hydrazones, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For a related structure, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3·H2O

  • Mr = 301.30

  • Triclinic, [P \overline 1]

  • a = 6.5387 (1) Å

  • b = 6.9730 (1) Å

  • c = 15.9064 (3) Å

  • α = 80.524 (1)°

  • β = 82.628 (1)°

  • γ = 85.036 (1)°

  • V = 707.85 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.68 × 0.44 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.976

  • 31311 measured reflections

  • 7380 independent reflections

  • 6571 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.118

  • S = 1.05

  • 7380 reflections

  • 211 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1W 0.864 (8) 1.978 (9) 2.8191 (7) 164.4 (11)
O1W—H2W1⋯O1i 0.837 (9) 2.013 (9) 2.8327 (7) 166.1 (11)
O1W—H1W1⋯O1ii 0.851 (9) 2.258 (11) 2.9430 (6) 137.7 (10)
O1W—H1W1⋯N1ii 0.851 (9) 2.357 (9) 3.1287 (7) 151.0 (11)
C1—H1A⋯O1Wiii 0.93 2.50 3.4090 (7) 165
C4—H4A⋯O2iv 0.93 2.58 3.4565 (8) 157
C7—H7A⋯O1W 0.93 2.55 3.2393 (7) 132
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hydrazones are versatile intermediates and important building blocks. Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde on diformylation by the treatment with Vilsmeier reagent. A series of hydrazide-hydrazones were reported to possess good antituberculosis activity (Bedia et al., 2006). Prompted by these review and in continuation of our work (Fun et al., 2008), we here in report the crystal structure of the title compound, (I).

Bond lengths and angles in (I) (Fig. 1) are found to have normal values (Allen et al., 1987). The two benzene rings are essentially planar with the maximum deviation from planarity being -0.004 (1) Å for atom C6 and 0.002 (1) Å for atom C12, respectively. The dihedral angle formed by the benzene (C1—C6) and (C9—C14) rings is 2.03 (2)°.

The crystal packing is consolidated by O—H···O, O—H···N, C—H···O and N—H···O inter and intramolecular hydrogen bonding (Table 1). Furthermore, the packing is strengthened by π-π stacking interactions involving the benzene (C1—C6) (Cg1) and the symmetry related (C9—C14) ring (Cg2) [Cg1···Cg2i = 3.8208 (3) Å; symmetry code: (i) 2-x, 1-y, -z] together with O···N short contacts [2.6824 (7) Å]. In the crystal packing, adjacent molecules are linked into dimers by water molecules and the dimers were then stacked down the [010] direction (Fig. 2).

Related literature top

For related literature on hydrazones, see: Sridhar & Perumal (2003). For the biological applications of hydrazides/hydrazones, see: Bedia et al. (2006). For a related structure, see: Fun et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, C15H15N3O4, was obtained by refluxing 4-nitrobenzhydrazide (0.01 mol) and 4-methylbenzaldehyde (0.01 mol) in ethanol (30 ml) by adding 3 drops of concentrated sulfuric acid for 3 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with water and dried. Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

The amino and water H atoms were located in a difference map and refined with restraints of N—H = 0.85 (1) Å and O—H = 0.84 (1) Å. The remaining H atoms were positioned geometrically [C—H = 0.93 Å (aromatic) or 0.96 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing stacking of the dimers along the b axis.
N'-[(Z)-4-Methylbenzylidene]-4-nitrobenzohydrazide monohydrate top
Crystal data top
C15H13N3O3·H2OZ = 2
Mr = 301.30F(000) = 316
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5387 (1) ÅCell parameters from 9969 reflections
b = 6.9730 (1) Åθ = 2.6–26.3°
c = 15.9064 (3) ŵ = 0.11 mm1
α = 80.524 (1)°T = 100 K
β = 82.628 (1)°Block, colourless
γ = 85.036 (1)°0.68 × 0.44 × 0.23 mm
V = 707.85 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7380 independent reflections
Radiation source: fine-focus sealed tube6571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 37.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.932, Tmax = 0.976k = 1110
31311 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1283P]
where P = (Fo2 + 2Fc2)/3
7380 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.48 e Å3
4 restraintsΔρmin = 0.59 e Å3
Crystal data top
C15H13N3O3·H2Oγ = 85.036 (1)°
Mr = 301.30V = 707.85 (2) Å3
Triclinic, P1Z = 2
a = 6.5387 (1) ÅMo Kα radiation
b = 6.9730 (1) ŵ = 0.11 mm1
c = 15.9064 (3) ÅT = 100 K
α = 80.524 (1)°0.68 × 0.44 × 0.23 mm
β = 82.628 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7380 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6571 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.976Rint = 0.020
31311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
7380 reflectionsΔρmin = 0.59 e Å3
211 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.27580 (6)0.77076 (7)0.04714 (3)0.01642 (8)
O20.75581 (8)1.18850 (8)0.38841 (3)0.02159 (10)
O30.46360 (8)1.16591 (9)0.30724 (3)0.02477 (11)
N11.08155 (7)0.62939 (7)0.10666 (3)0.01228 (8)
N20.97488 (7)0.71707 (7)0.03900 (3)0.01180 (8)
N30.65301 (8)1.14188 (7)0.31919 (3)0.01517 (9)
C11.25937 (9)0.43357 (8)0.25978 (3)0.01394 (9)
H1A1.35280.45560.21050.017*
C21.32689 (9)0.33958 (9)0.33630 (4)0.01558 (9)
H2A1.46600.29920.33750.019*
C31.19044 (10)0.30421 (9)0.41173 (4)0.01618 (10)
C40.98236 (10)0.36711 (9)0.40850 (4)0.01732 (10)
H4A0.88910.34550.45790.021*
C50.91322 (9)0.46166 (9)0.33225 (4)0.01511 (9)
H5A0.77440.50320.33130.018*
C61.05015 (8)0.49509 (8)0.25695 (3)0.01205 (8)
C70.96681 (8)0.59124 (8)0.17866 (3)0.01265 (9)
H7A0.82590.62610.18090.015*
C81.08418 (8)0.78209 (7)0.03665 (3)0.01124 (8)
C90.96283 (8)0.87393 (7)0.10826 (3)0.01078 (8)
C100.74981 (8)0.92155 (8)0.09685 (3)0.01259 (9)
H10A0.67600.89320.04280.015*
C110.64812 (8)1.01101 (8)0.16601 (3)0.01320 (9)
H11A0.50671.04350.15890.016*
C120.76204 (8)1.05088 (8)0.24589 (3)0.01220 (8)
C130.97361 (9)1.00639 (8)0.25947 (3)0.01340 (9)
H13A1.04651.03550.31370.016*
C141.07314 (8)0.91711 (8)0.18969 (3)0.01269 (9)
H14A1.21480.88570.19720.015*
C151.26554 (12)0.20102 (11)0.49388 (4)0.02473 (13)
H15A1.15170.18990.53860.037*
H15B1.36870.27400.50960.037*
H15C1.32420.07330.48590.037*
O1W0.56488 (7)0.60570 (7)0.07749 (3)0.01669 (8)
H1N20.8430 (12)0.7058 (17)0.0471 (8)0.027 (3)*
H2W10.5907 (17)0.4907 (12)0.0684 (8)0.031 (3)*
H1W10.4410 (13)0.6364 (17)0.0668 (8)0.035 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.00972 (15)0.0221 (2)0.01583 (17)0.00035 (13)0.00227 (13)0.00155 (14)
O20.0250 (2)0.0269 (2)0.01076 (17)0.00148 (17)0.00275 (15)0.00358 (15)
O30.01615 (19)0.0361 (3)0.0199 (2)0.00133 (18)0.00737 (16)0.00461 (19)
N10.01330 (18)0.01250 (17)0.01075 (17)0.00018 (13)0.00421 (13)0.00081 (13)
N20.01085 (17)0.01426 (18)0.00977 (16)0.00046 (13)0.00339 (13)0.00113 (13)
N30.0174 (2)0.01585 (19)0.01215 (18)0.00094 (15)0.00535 (15)0.00083 (14)
C10.0137 (2)0.0152 (2)0.01227 (19)0.00081 (16)0.00285 (15)0.00066 (15)
C20.0155 (2)0.0166 (2)0.0143 (2)0.00085 (17)0.00481 (16)0.00018 (16)
C30.0208 (2)0.0158 (2)0.01158 (19)0.00194 (17)0.00496 (17)0.00040 (16)
C40.0199 (2)0.0196 (2)0.01066 (19)0.00142 (18)0.00093 (17)0.00081 (16)
C50.0148 (2)0.0174 (2)0.01210 (19)0.00041 (16)0.00163 (16)0.00002 (16)
C60.01369 (19)0.01192 (19)0.01037 (18)0.00115 (15)0.00323 (14)0.00030 (14)
C70.01325 (19)0.0133 (2)0.01122 (18)0.00088 (15)0.00333 (15)0.00004 (15)
C80.01101 (18)0.01159 (18)0.01084 (18)0.00006 (14)0.00243 (14)0.00044 (14)
C90.01090 (18)0.01125 (18)0.00998 (17)0.00020 (14)0.00238 (14)0.00045 (14)
C100.01106 (18)0.0154 (2)0.01048 (18)0.00026 (15)0.00182 (14)0.00036 (15)
C110.01170 (19)0.0154 (2)0.01187 (19)0.00029 (15)0.00297 (15)0.00029 (15)
C120.01382 (19)0.01256 (19)0.01019 (18)0.00090 (15)0.00400 (15)0.00040 (14)
C130.0141 (2)0.0151 (2)0.01041 (18)0.00143 (16)0.00148 (15)0.00005 (15)
C140.01159 (19)0.0146 (2)0.01130 (18)0.00053 (15)0.00128 (14)0.00060 (15)
C150.0321 (3)0.0271 (3)0.0134 (2)0.0068 (2)0.0081 (2)0.0011 (2)
O1W0.01130 (16)0.0212 (2)0.01725 (18)0.00029 (13)0.00349 (13)0.00109 (14)
Geometric parameters (Å, º) top
O1—C81.2400 (6)C6—C71.4605 (7)
O2—N31.2246 (7)C7—H7A0.9300
O3—N31.2298 (7)C8—C91.4970 (7)
N1—C71.2881 (7)C9—C141.3994 (7)
N1—N21.3859 (6)C9—C101.3994 (7)
N2—C81.3491 (7)C10—C111.3898 (7)
N2—H1N20.864 (8)C10—H10A0.9300
N3—C121.4703 (7)C11—C121.3867 (7)
C1—C21.3896 (8)C11—H11A0.9300
C1—C61.4019 (8)C12—C131.3884 (8)
C1—H1A0.9300C13—C141.3895 (7)
C2—C31.4008 (8)C13—H13A0.9300
C2—H2A0.9300C14—H14A0.9300
C3—C41.3977 (9)C15—H15A0.9600
C3—C151.5035 (8)C15—H15B0.9600
C4—C51.3913 (8)C15—H15C0.9600
C4—H4A0.9300O1W—H2W10.837 (8)
C5—C61.3999 (8)O1W—H1W10.851 (8)
C5—H5A0.9300
C7—N1—N2114.21 (4)O1—C8—N2122.52 (5)
C8—N2—N1118.48 (4)O1—C8—C9120.74 (5)
C8—N2—H1N2125.4 (8)N2—C8—C9116.74 (4)
N1—N2—H1N2115.2 (8)C14—C9—C10119.65 (5)
O2—N3—O3123.96 (5)C14—C9—C8116.93 (4)
O2—N3—C12118.18 (5)C10—C9—C8123.40 (5)
O3—N3—C12117.85 (5)C11—C10—C9120.23 (5)
C2—C1—C6119.91 (5)C11—C10—H10A119.9
C2—C1—H1A120.0C9—C10—H10A119.9
C6—C1—H1A120.0C12—C11—C10118.60 (5)
C1—C2—C3121.56 (5)C12—C11—H11A120.7
C1—C2—H2A119.2C10—C11—H11A120.7
C3—C2—H2A119.2C11—C12—C13122.73 (5)
C4—C3—C2118.18 (5)C11—C12—N3118.38 (5)
C4—C3—C15120.88 (6)C13—C12—N3118.89 (5)
C2—C3—C15120.95 (6)C12—C13—C14118.01 (5)
C5—C4—C3120.72 (5)C12—C13—H13A121.0
C5—C4—H4A119.6C14—C13—H13A121.0
C3—C4—H4A119.6C13—C14—C9120.79 (5)
C4—C5—C6120.80 (5)C13—C14—H14A119.6
C4—C5—H5A119.6C9—C14—H14A119.6
C6—C5—H5A119.6C3—C15—H15A109.5
C5—C6—C1118.83 (5)C3—C15—H15B109.5
C5—C6—C7118.05 (5)H15A—C15—H15B109.5
C1—C6—C7123.11 (5)C3—C15—H15C109.5
N1—C7—C6122.33 (5)H15A—C15—H15C109.5
N1—C7—H7A118.8H15B—C15—H15C109.5
C6—C7—H7A118.8H2W1—O1W—H1W1106.0 (10)
C7—N1—N2—C8172.77 (5)N2—C8—C9—C14171.45 (5)
C6—C1—C2—C30.09 (9)O1—C8—C9—C10168.59 (5)
C1—C2—C3—C40.32 (9)N2—C8—C9—C1010.18 (8)
C1—C2—C3—C15179.55 (6)C14—C9—C10—C110.09 (8)
C2—C3—C4—C50.20 (9)C8—C9—C10—C11178.42 (5)
C15—C3—C4—C5179.67 (6)C9—C10—C11—C120.20 (8)
C3—C4—C5—C60.33 (9)C10—C11—C12—C130.47 (8)
C4—C5—C6—C10.73 (9)C10—C11—C12—N3178.76 (5)
C4—C5—C6—C7178.66 (5)O2—N3—C12—C11175.31 (5)
C2—C1—C6—C50.61 (8)O3—N3—C12—C114.94 (8)
C2—C1—C6—C7178.75 (5)O2—N3—C12—C135.43 (8)
N2—N1—C7—C6178.63 (5)O3—N3—C12—C13174.32 (6)
C5—C6—C7—N1179.37 (5)C11—C12—C13—C140.42 (8)
C1—C6—C7—N11.26 (9)N3—C12—C13—C14178.81 (5)
N1—N2—C8—O11.88 (8)C12—C13—C14—C90.10 (8)
N1—N2—C8—C9179.38 (4)C10—C9—C14—C130.14 (8)
O1—C8—C9—C149.78 (8)C8—C9—C14—C13178.58 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1W0.86 (1)1.98 (1)2.8191 (7)164 (1)
O1W—H2W1···O1i0.84 (1)2.01 (1)2.8327 (7)166 (1)
O1W—H1W1···O1ii0.85 (1)2.26 (1)2.9430 (6)138 (1)
O1W—H1W1···N1ii0.85 (1)2.36 (1)3.1287 (7)151 (1)
C1—H1A···O1Wiii0.932.503.4090 (7)165
C4—H4A···O2iv0.932.583.4565 (8)157
C7—H7A···O1W0.932.553.2393 (7)132
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O3·H2O
Mr301.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5387 (1), 6.9730 (1), 15.9064 (3)
α, β, γ (°)80.524 (1), 82.628 (1), 85.036 (1)
V3)707.85 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.68 × 0.44 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.932, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
31311, 7380, 6571
Rint0.020
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.119, 1.05
No. of reflections7380
No. of parameters211
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.59

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1W0.864 (8)1.978 (9)2.8191 (7)164.4 (11)
O1W—H2W1···O1i0.837 (9)2.013 (9)2.8327 (7)166.1 (11)
O1W—H1W1···O1ii0.851 (9)2.258 (11)2.9430 (6)137.7 (10)
O1W—H1W1···N1ii0.851 (9)2.357 (9)3.1287 (7)151.0 (11)
C1—H1A···O1Wiii0.932.503.4090 (7)165
C4—H4A···O2iv0.932.583.4565 (8)157
C7—H7A···O1W0.932.553.2393 (7)132
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds