metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1610-m1611

Aqua­tricarbon­yl(3,5,7-tri­bromo­tropolonato)rhenium(I) methanol solvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: schuttem.sci@ufs.ac.za

(Received 9 September 2008; accepted 19 November 2008; online 22 November 2008)

The title complex, [Re(C7H2Br3O2)(CO)3(H2O)]·CH3OH, crystallized as a neutral ReI compound and one methanol solvent mol­ecule in the asymmetric unit. The metal centre is coordinated facially by three carbonyl groups. The bidentate tribromo­tropolanate ligand and a water mol­ecule complete the distorted octahedral coordination around the central metal. Inter­molecular Br⋯O [3.226 (5) Å] and Br⋯Br [3.590 (2) Å] contacts are observed between adjacent mol­ecules. These contacts, together with an array of O—H⋯O, O—H⋯Br and C—H⋯O hydrogen bonds, complete a three-dimensional polymeric network formed between the methanol solvent and the complex.

Related literature

For a smiliar tribromo­tropolonato ReI structure, see: Schutte et al. (2007[Schutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195-m3196.]). For other related structures, see: Kemp (2006[Kemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-129.]); Wang et al. (2003[Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-391.]); Alvarez et al. (2007[Alvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546-3554.]); Brasey et al. (2004[Brasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964-967.]); Gibson et al. (1999[Gibson, D. H., Ding, Y., Miller, R. L., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1999). Polyhedron, 18, 1189-1200.]); Bochkova et al. (1987[Bochkova, R. I., Zakharov, L. N., Patrikeeva, N. V., Shal'nova, K. G., Abakumov, G. A. & Cherkasov, V. K. (1987). Koord. Khim. 13, 702-705.]); Cheng et al. (1988[Cheng, C. P., Wang, S. R., Lin, J. C. & Wang, S.-L. (1988). J. Organomet. Chem. 349, 375-382.]); Mundwiler et al. (2004[Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans., pp. 1320-1328.]). For the synthesis of the precursor, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1083.]). For synthesis of the tribromo­tropolone ligand, see: Steyl & Roodt (2006[Steyl, G. & Roodt, A. (2006). S. Afr. J. Chem. 49, 21-22.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C7H2Br3O2)(CO)3(H2O)]·CH4O

  • Mr = 678.1

  • Triclinic, [P \overline 1]

  • a = 9.090 (5) Å

  • b = 9.379 (5) Å

  • c = 10.010 (5) Å

  • α = 109.569 (5)°

  • β = 94.285 (5)°

  • γ = 102.133 (5)°

  • V = 776.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.58 mm−1

  • T = 100 (2) K

  • 0.19 × 0.06 × 0.03 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.150, Tmax = 0.626

  • 8673 measured reflections

  • 3599 independent reflections

  • 3018 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 1.05

  • 3599 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.40 e Å−3

  • Δρmin = −2.11 e Å−3

Table 1
Selected geometric parameters (Å, °)

Re01—C1 1.882 (7)
Re01—C3 1.897 (6)
Re01—C2 1.899 (7)
Re01—O4 2.123 (5)
Re01—O5 2.146 (4)
Re01—O6 2.170 (5)
O4—Re01—O5 74.07 (16)
O4—Re01—O6 78.93 (19)
O5—Re01—O6 79.17 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯Br1i 1.06 (8) 2.68 (8) 3.421 (6) 127 (5)
O6—H6B⋯O5i 1.06 (8) 1.86 (8) 2.825 (7) 149 (6)
C15—H15⋯O2ii 0.93 2.5 3.409 (8) 166
O7—H7⋯O1iii 0.82 2.39 2.986 (7) 130
O6—H6A⋯O7 0.99 (8) 1.69 (8) 2.665 (7) 167 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This structure forms part of an ongoing investigation of the structural and kinetic behaviour of fac-Re(CO)3 compounds (Schutte et al., 2007; Roodt et al., 2003). The title complex crystallized as a neutral ReI compound and one methanol solvate molecule in the assymetric unit. The Re—CO bond distances are well within the normal range. The Re—O bond distances compare well with the analogous bromido complex (Schutte et al., 2007) and other related structures (Alvarez et al., 2007; Brasey et al., 2004; Gibson et al., 1999; Bochkova et al., 1987; Cheng et al., 1988; Wang et al., 2003). The Re—OH2 distance is also comparable to that of related structures (Mundwiler et al., 2004; Kemp, 2006). The small bite angle O4—Re01—O5 might be the reason for the slightly distorted octahedral geometry around the Re1 metal centre.

Interesting intermolecular Br···O and Br···Br contacts are observed between adjacent molecules with distances of 3.226 (5) Å between Br1 and O3 and 3.590 (2) Å between Br2 and Br2 of the next molecule. These contacts together with an array of O—H···O, O—H···Br and C—H···O hydrogen bonds (see Table 2), complete a complex three-dimensional polymeric network.

Related literature top

For a smiliar tribromotropolonato ReI structure, see: Schutte et al. (2007). For other related structures, see: Kemp (2006); Roodt et al. (2003); Wang, et al. (2003); Alvarez et al. (2007); Brasey et al. (2004); Gibson et al. (1999); Bochkova et al. (1987); Cheng et al. (1988); Mundwiler et al. (2004). For the synthesis of the precursor, see: Alberto et al. (1996). For synthesis of the tribromotropolone ligand, see: Steyl & Roodt (2006).

Experimental top

[NEt4]2[Re(CO)3Br3] was prepared as described by Alberto et al. (1996). 300 mg (0.3894 mmole) of [NEt4]2[Re(CO)3Br3] was dissolved in 10 ml of H2O at pH 2.2 and stirred for 30 minutes (until dissolved). AgNO3 (198 mg, 1.167 mmol) was added to the solution and stirred for 24 h at room temperature. AgBr was formed as a grey precipitate and was filtered off and weighed (0.220 g). Tribromotroplone [151 mg, 0.4514 mmol for synthesis see Steyl & Roodt (2006)] in 2 ml of methanol was added the solution and stirred for 40 h at room temperature. The filtrate was left to stand for a few days and orange plate-like crystals suitable for X-ray diffraction were collected.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2Ueq(C). The highest electron density lies within 1.14 Å from Re. The hydrogen atoms of the coordinated water molecule were determined from a difference Fourier map and their positional parameters freely refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005) and ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
Aquatricarbonyl(3,5,7-tribromotropolonato)rhenium(I) methanol solvate top
Crystal data top
[Re(C7H2Br3O2)(CO)3(H2O)]·CH4OZ = 2
Mr = 678.1F(000) = 620
Triclinic, P1Dx = 2.901 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.090 (5) ÅCell parameters from 3145 reflections
b = 9.379 (5) Åθ = 2.2–28.2°
c = 10.010 (5) ŵ = 15.58 mm1
α = 109.569 (5)°T = 100 K
β = 94.285 (5)°Plate, orange
γ = 102.133 (5)°0.19 × 0.06 × 0.03 mm
V = 776.3 (7) Å3
Data collection top
Bruker APEX
diffractometer
3018 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.3°, θmin = 2.2°
Tmin = 0.150, Tmax = 0.626h = 812
8673 measured reflectionsk = 1112
3599 independent reflectionsl = 1310
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0385P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.05Δρmax = 2.41 e Å3
3599 reflectionsΔρmin = 2.11 e Å3
207 parameters
Crystal data top
[Re(C7H2Br3O2)(CO)3(H2O)]·CH4Oγ = 102.133 (5)°
Mr = 678.1V = 776.3 (7) Å3
Triclinic, P1Z = 2
a = 9.090 (5) ÅMo Kα radiation
b = 9.379 (5) ŵ = 15.58 mm1
c = 10.010 (5) ÅT = 100 K
α = 109.569 (5)°0.19 × 0.06 × 0.03 mm
β = 94.285 (5)°
Data collection top
Bruker APEX
diffractometer
3599 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3018 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.626Rint = 0.035
8673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.41 e Å3
3599 reflectionsΔρmin = 2.11 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re010.54228 (3)0.51098 (3)0.75340 (3)0.00853 (8)
Br10.46576 (7)0.05513 (7)0.28520 (6)0.01185 (14)
O40.3428 (5)0.3587 (5)0.7724 (4)0.0107 (9)
C110.3852 (7)0.1903 (7)0.5557 (7)0.0098 (13)
C20.7128 (8)0.6389 (7)0.7149 (7)0.0141 (8)
C150.1120 (7)0.0432 (8)0.6174 (7)0.0130 (13)
H150.03470.0930.65430.016 (19)*
C30.5502 (8)0.6908 (8)0.9164 (7)0.0141 (8)
C170.2988 (7)0.2213 (7)0.6772 (6)0.0079 (12)
O50.4976 (5)0.3042 (5)0.5642 (4)0.0096 (9)
C160.1735 (7)0.1137 (7)0.6939 (6)0.0100 (13)
C120.3491 (7)0.0514 (7)0.4343 (6)0.0084 (12)
C130.2524 (7)0.0921 (7)0.4077 (7)0.0101 (13)
H130.25540.16980.32170.012 (18)*
C140.1514 (7)0.1368 (7)0.4909 (7)0.0135 (13)
Br20.04885 (8)0.35228 (8)0.42285 (7)0.01741 (15)
Br30.08290 (7)0.19489 (8)0.85829 (7)0.01438 (15)
O20.8201 (5)0.7193 (5)0.6960 (5)0.0181 (11)
O30.5530 (6)0.8006 (6)1.0157 (5)0.0191 (11)
O10.7678 (6)0.4158 (6)0.9272 (5)0.0221 (11)
C10.6804 (8)0.4526 (8)0.8620 (7)0.0153 (14)
O70.1793 (6)0.6493 (6)0.8032 (5)0.0186 (11)
H70.14380.59130.84490.028*
C40.1962 (8)0.8155 (7)0.8974 (7)0.0141 (8)
H4C0.24480.8330.9920.021*
H4A0.09740.83650.90240.021*
H4B0.25720.88370.85830.021*
O60.3692 (6)0.5548 (6)0.6216 (5)0.0214 (11)
H6A0.295 (9)0.599 (9)0.681 (8)0.032*
H6B0.406 (9)0.640 (9)0.575 (8)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re010.00886 (14)0.00633 (14)0.00918 (13)0.00064 (10)0.00140 (9)0.00280 (10)
Br10.0139 (3)0.0099 (3)0.0110 (3)0.0015 (3)0.0039 (2)0.0033 (2)
O40.016 (3)0.006 (2)0.010 (2)0.001 (2)0.0039 (18)0.0042 (18)
C110.007 (3)0.012 (3)0.015 (3)0.005 (3)0.004 (2)0.008 (3)
C20.024 (2)0.0071 (19)0.0122 (17)0.0075 (18)0.0005 (15)0.0033 (15)
C150.010 (3)0.017 (4)0.014 (3)0.002 (3)0.002 (2)0.009 (3)
C30.024 (2)0.0071 (19)0.0122 (17)0.0075 (18)0.0005 (15)0.0033 (15)
C170.010 (3)0.007 (3)0.010 (3)0.001 (3)0.000 (2)0.006 (2)
O50.010 (2)0.004 (2)0.011 (2)0.0030 (19)0.0036 (17)0.0002 (17)
C160.011 (3)0.012 (3)0.008 (3)0.002 (3)0.003 (2)0.005 (3)
C120.006 (3)0.013 (3)0.007 (3)0.001 (3)0.001 (2)0.005 (2)
C130.004 (3)0.010 (3)0.014 (3)0.000 (3)0.002 (2)0.004 (3)
C140.010 (3)0.007 (3)0.019 (3)0.004 (3)0.004 (3)0.004 (3)
Br20.0181 (4)0.0091 (3)0.0225 (3)0.0015 (3)0.0040 (3)0.0052 (3)
Br30.0123 (3)0.0144 (3)0.0140 (3)0.0005 (3)0.0057 (3)0.0036 (3)
O20.016 (3)0.015 (3)0.025 (3)0.001 (2)0.010 (2)0.011 (2)
O30.017 (3)0.017 (3)0.018 (2)0.005 (2)0.003 (2)0.001 (2)
O10.022 (3)0.025 (3)0.020 (3)0.008 (2)0.001 (2)0.010 (2)
C10.020 (4)0.009 (3)0.012 (3)0.000 (3)0.003 (3)0.001 (3)
O70.025 (3)0.021 (3)0.022 (3)0.013 (2)0.008 (2)0.018 (2)
C40.024 (2)0.0071 (19)0.0122 (17)0.0075 (18)0.0005 (15)0.0033 (15)
O60.025 (3)0.025 (3)0.025 (3)0.013 (3)0.008 (2)0.018 (2)
Geometric parameters (Å, º) top
Re01—C11.882 (7)C3—O31.162 (8)
Re01—C31.897 (6)C17—C161.415 (8)
Re01—C21.899 (7)C16—Br31.895 (6)
Re01—O42.123 (5)C12—C131.372 (9)
Re01—O52.146 (4)C13—C141.378 (9)
Re01—O62.170 (5)C13—H130.93
Br1—C121.899 (6)C14—Br21.900 (6)
O4—C171.278 (7)O1—C11.168 (8)
C11—O51.289 (7)O7—C41.495 (8)
C11—C121.408 (9)O7—H70.82
C11—C171.477 (8)C4—H4C0.96
C2—O21.171 (8)C4—H4A0.96
C15—C161.379 (9)C4—H4B0.96
C15—C141.398 (9)O6—H6A0.99 (8)
C15—H150.93O6—H6B1.06 (8)
C1—Re01—C389.5 (3)C16—C17—C11125.5 (6)
C1—Re01—C287.8 (3)C11—O5—Re01117.1 (4)
C3—Re01—C285.0 (3)C15—C16—C17131.3 (6)
C1—Re01—O496.2 (2)C15—C16—Br3113.9 (5)
C3—Re01—O499.6 (2)C17—C16—Br3114.6 (4)
C2—Re01—O4173.9 (2)C13—C12—C11131.5 (6)
C1—Re01—O596.7 (2)C13—C12—Br1113.1 (4)
C3—Re01—O5171.5 (2)C11—C12—Br1115.2 (5)
C2—Re01—O5100.9 (2)C12—C13—C14128.9 (6)
O4—Re01—O574.07 (16)C12—C13—H13115.6
C1—Re01—O6174.3 (3)C14—C13—H13115.6
C3—Re01—O694.2 (2)C13—C14—C15128.3 (6)
C2—Re01—O696.8 (2)C13—C14—Br2115.9 (5)
O4—Re01—O678.93 (19)C15—C14—Br2115.8 (5)
O5—Re01—O679.17 (18)O1—C1—Re01178.7 (6)
C17—O4—Re01118.0 (4)C4—O7—H7109.5
O5—C11—C12120.1 (5)O7—C4—H4C109.5
O5—C11—C17115.0 (5)O7—C4—H4A109.5
C12—C11—C17124.9 (6)H4C—C4—H4A109.5
O2—C2—Re01177.7 (6)O7—C4—H4B109.5
C16—C15—C14128.0 (6)H4C—C4—H4B109.5
C16—C15—H15116H4A—C4—H4B109.5
C14—C15—H15116Re01—O6—H6A110 (4)
O3—C3—Re01179.1 (6)Re01—O6—H6B117 (4)
O4—C17—C16119.0 (5)H6A—O6—H6B102 (6)
O4—C17—C11115.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···Br1i1.06 (8)2.68 (8)3.421 (6)127 (5)
O6—H6B···O5i1.06 (8)1.86 (8)2.825 (7)149 (6)
C15—H15···O2ii0.932.53.409 (8)166
O7—H7···O1iii0.822.392.986 (7)130
O6—H6A···O70.99 (8)1.69 (8)2.665 (7)167 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Re(C7H2Br3O2)(CO)3(H2O)]·CH4O
Mr678.1
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.090 (5), 9.379 (5), 10.010 (5)
α, β, γ (°)109.569 (5), 94.285 (5), 102.133 (5)
V3)776.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)15.58
Crystal size (mm)0.19 × 0.06 × 0.03
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.150, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
8673, 3599, 3018
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.05
No. of reflections3599
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.41, 2.11

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005) and ORTEP-3 (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Re01—C11.882 (7)Re01—O42.123 (5)
Re01—C31.897 (6)Re01—O52.146 (4)
Re01—C21.899 (7)Re01—O62.170 (5)
O4—Re01—O574.07 (16)O5—Re01—O679.17 (18)
O4—Re01—O678.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···Br1i1.06 (8)2.68 (8)3.421 (6)127 (5)
O6—H6B···O5i1.06 (8)1.86 (8)2.825 (7)149 (6)
C15—H15···O2ii0.932.53.409 (8)166
O7—H7···O1iii0.822.392.986 (7)130
O6—H6A···O70.99 (8)1.69 (8)2.665 (7)167 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+1, z+2.
 

Acknowledgements

The University of the Free State is gratefully acknowledged for financial support, Dr A.J. Muller for the data collection and Dr G. Steyl for providing the ligand.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1083.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546–3554.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBochkova, R. I., Zakharov, L. N., Patrikeeva, N. V., Shal'nova, K. G., Abakumov, G. A. & Cherkasov, V. K. (1987). Koord. Khim. 13, 702–705.  CAS Google Scholar
First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964–967.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C. P., Wang, S. R., Lin, J. C. & Wang, S.-L. (1988). J. Organomet. Chem. 349, 375–382.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGibson, D. H., Ding, Y., Miller, R. L., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1999). Polyhedron, 18, 1189–1200.  Web of Science CSD CrossRef CAS Google Scholar
First citationKemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.  Google Scholar
First citationMundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans., pp. 1320–1328.  Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195–m3196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G. & Roodt, A. (2006). S. Afr. J. Chem. 49, 21–22.  Google Scholar
First citationWang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–391.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1610-m1611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds