organic compounds
rac-3,4-trans-Dichloro-1,2,3,4-tetrahydro-2-naphthyl acetate
aDepartment of Chemistry, Faculty of Science, Atatürk University, 25240-Erzurum, Turkey
*Correspondence e-mail: ertan@atauni.edu.tr
The title compound, C12H12Cl2O2, has a bicyclic skeleton containing cyclohexene and benzene fragments. The cyclohexene ring adopts a half-chair conformation with displacements of two atoms out of the least-squares plane of 0.311 (2) and −0.336 (2) Å. The Cl atoms are trans-positioned.
Related literature
For related literature, see: Frimer (1985a,b); March & Smith (2001); McBride et al. (1999); Metha & Ramesh (2003, 2005); Metha et al. (2003); Patai (1983); Ros et al. (2006); Wasserman & Murray (1979). For related structures, see: Kishali et al. (2006a,b).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808035563/kp2181sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035563/kp2181Isup2.hkl
3,4-Dichloro-1, 2, 3, 4-tetrahydro-naphtahalen-2-yl acetate was prepared as follows. To a magnetically stirred acetone solution (25 ml of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate (260 mg, 1 mmol) was added a solution of KMnO4 (158 mg, 1 mmol) and MgSO4 (144 mg, 1.2 mmol) in water (20 ml) at 253 K during 5 h. After the addition was completed, the reaction mixture was stirred for an additional 15 h at the given temperature and then filtered. The filtrate was concentrated to 20 ml by evaporation. The aqueous solution was extracted with ethyl acetate (3x30 ml) and the extract were dried (Na2SO4). Evaporation of the solvent gave
of compound I. It was separated by eluting with ethylacetate/hexanes (120 mg, 42%, colourless solid). Colourless solid from CH2Cl2/hexane. m. p: 348–349 K. 1H-NMR (400 MHz, CDCl3, p.p.m.): 7.39–7.12 (m, 4H), 5.78 (m, 1H-C(2)), 5.35 (d, J = 3.3, 1H-C(4)), 4.74 (t, J = 2.9, 1H-C(3)), 3.2 (m, 2H-C(1)), 2.14 (s, 3H-C(Ac)). 13C-NMR (100 MHz, CDCl3, p.p.m.):170.4, 132.9, 131.7, 130.9, 129.5, 129.3, 127.6, 67.3, 61.3, 60.1, 30.2, 30.0, 21.3. calcd C 55.62, H 4.67; found C 55.87, H 4.89.H atoms were placed in geometrically idealized positions (C—H=0.93–0.98 Å) and treated as riding, with Uiso(H)=1.2Ueq(C)(for methine and methylene) or 1.5Ueq(methyl C).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H12Cl2O2 | F(000) = 536 |
Mr = 259.12 | Dx = 1.461 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6382 reflections |
a = 12.931 (5) Å | θ = 2.3–30.6° |
b = 12.478 (5) Å | µ = 0.53 mm−1 |
c = 7.441 (4) Å | T = 293 K |
β = 101.040 (5)° | Needle, pale white |
V = 1178.4 (9) Å3 | 0.2 × 0.2 × 0.2 mm |
Z = 4 |
Rigaku R-AXIS conversion diffractometer | Rint = 0.083 |
dtprofit.ref scans | θmax = 30.7°, θmin = 2.3° |
Absorption correction: multi-scan (Blessing, 1995) | h = −18→18 |
Tmin = 0.897, Tmax = 0.898 | k = −17→17 |
34473 measured reflections | l = −10→10 |
3627 independent reflections | 25 standard reflections every 200 reflections |
2486 reflections with I > 2σ(I) | intensity decay: 3% |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.063 | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.2956P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.154 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.21 e Å−3 |
3627 reflections | Δρmin = −0.34 e Å−3 |
146 parameters |
C12H12Cl2O2 | V = 1178.4 (9) Å3 |
Mr = 259.12 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.931 (5) Å | µ = 0.53 mm−1 |
b = 12.478 (5) Å | T = 293 K |
c = 7.441 (4) Å | 0.2 × 0.2 × 0.2 mm |
β = 101.040 (5)° |
Rigaku R-AXIS conversion diffractometer | 2486 reflections with I > 2σ(I) |
Absorption correction: multi-scan (Blessing, 1995) | Rint = 0.083 |
Tmin = 0.897, Tmax = 0.898 | 25 standard reflections every 200 reflections |
34473 measured reflections | intensity decay: 3% |
3627 independent reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.21 e Å−3 |
3627 reflections | Δρmin = −0.34 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.22319 (6) | 0.59964 (5) | 0.18471 (9) | 0.0666 (2) | |
Cl2 | 0.12465 (5) | 0.59224 (5) | 0.70388 (10) | 0.0667 (2) | |
O1 | 0.13535 (12) | 0.35895 (13) | 0.5577 (2) | 0.0535 (4) | |
O2 | 0.23303 (14) | 0.22818 (15) | 0.4683 (3) | 0.0722 (5) | |
C1 | 0.34102 (17) | 0.62147 (18) | 0.5296 (3) | 0.0486 (5) | |
C2 | 0.40917 (19) | 0.7052 (2) | 0.5078 (3) | 0.0580 (6) | |
H2 | 0.3843 | 0.7623 | 0.4315 | 0.07* | |
C3 | 0.5123 (2) | 0.7044 (2) | 0.5973 (4) | 0.0646 (7) | |
H3 | 0.5573 | 0.7601 | 0.5804 | 0.078* | |
C4 | 0.5489 (2) | 0.6200 (2) | 0.7129 (4) | 0.0636 (7) | |
H4 | 0.6184 | 0.6197 | 0.7756 | 0.076* | |
C5 | 0.48316 (19) | 0.5365 (2) | 0.7357 (3) | 0.0577 (6) | |
H5 | 0.5089 | 0.4802 | 0.8135 | 0.069* | |
C6 | 0.37804 (17) | 0.53492 (18) | 0.6436 (3) | 0.0478 (5) | |
C7 | 0.30921 (18) | 0.44074 (19) | 0.6704 (3) | 0.0533 (5) | |
H7A | 0.3489 | 0.3748 | 0.6696 | 0.064* | |
H7B | 0.2883 | 0.4467 | 0.7884 | 0.064* | |
C8 | 0.21251 (17) | 0.43671 (18) | 0.5214 (3) | 0.0483 (5) | |
H8 | 0.2343 | 0.4166 | 0.4069 | 0.058* | |
C9 | 0.15676 (17) | 0.54420 (18) | 0.4929 (3) | 0.0496 (5) | |
H9 | 0.0921 | 0.5369 | 0.4005 | 0.06* | |
C10 | 0.22906 (18) | 0.62559 (18) | 0.4281 (3) | 0.0512 (5) | |
H10 | 0.2012 | 0.6975 | 0.4416 | 0.061* | |
C11 | 0.15545 (19) | 0.25602 (19) | 0.5198 (3) | 0.0546 (6) | |
C12 | 0.0677 (2) | 0.1837 (2) | 0.5466 (4) | 0.0707 (7) | |
H12A | 0.0407 | 0.2066 | 0.6519 | 0.106* | |
H12B | 0.0934 | 0.1116 | 0.5648 | 0.106* | |
H12C | 0.0124 | 0.1865 | 0.4402 | 0.106* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0761 (5) | 0.0694 (4) | 0.0518 (4) | −0.0055 (3) | 0.0059 (3) | 0.0081 (3) |
Cl2 | 0.0632 (4) | 0.0683 (4) | 0.0735 (5) | 0.0053 (3) | 0.0256 (3) | −0.0070 (3) |
O1 | 0.0468 (9) | 0.0490 (9) | 0.0664 (10) | −0.0052 (7) | 0.0152 (8) | 0.0032 (7) |
O2 | 0.0656 (11) | 0.0582 (11) | 0.0966 (15) | −0.0020 (9) | 0.0247 (10) | −0.0128 (10) |
C1 | 0.0485 (12) | 0.0474 (11) | 0.0511 (12) | −0.0018 (9) | 0.0125 (10) | −0.0053 (9) |
C2 | 0.0639 (15) | 0.0509 (13) | 0.0615 (14) | −0.0085 (11) | 0.0179 (12) | −0.0030 (11) |
C3 | 0.0614 (15) | 0.0659 (16) | 0.0701 (16) | −0.0204 (12) | 0.0216 (13) | −0.0162 (13) |
C4 | 0.0460 (13) | 0.0794 (18) | 0.0653 (16) | −0.0074 (12) | 0.0108 (12) | −0.0163 (13) |
C5 | 0.0487 (13) | 0.0634 (15) | 0.0601 (14) | 0.0002 (11) | 0.0082 (11) | −0.0047 (11) |
C6 | 0.0444 (11) | 0.0518 (12) | 0.0482 (12) | −0.0019 (9) | 0.0114 (9) | −0.0028 (9) |
C7 | 0.0474 (12) | 0.0509 (12) | 0.0605 (14) | 0.0011 (10) | 0.0076 (11) | 0.0062 (11) |
C8 | 0.0430 (11) | 0.0455 (11) | 0.0579 (13) | −0.0031 (9) | 0.0131 (10) | 0.0016 (10) |
C9 | 0.0438 (11) | 0.0513 (12) | 0.0532 (12) | 0.0022 (9) | 0.0083 (10) | −0.0018 (10) |
C10 | 0.0533 (13) | 0.0455 (11) | 0.0544 (13) | 0.0019 (9) | 0.0094 (10) | 0.0015 (10) |
C11 | 0.0545 (13) | 0.0508 (13) | 0.0566 (14) | −0.0052 (10) | 0.0055 (11) | 0.0025 (10) |
C12 | 0.0676 (16) | 0.0600 (16) | 0.0823 (19) | −0.0171 (13) | 0.0092 (14) | 0.0069 (14) |
Cl1—C10 | 1.827 (3) | C7—H7A | 0.97 |
Cl2—C9 | 1.802 (3) | C7—H7B | 0.97 |
O1—C11 | 1.351 (3) | C8—H8 | 0.98 |
O1—C8 | 1.454 (3) | C10—H10 | 0.98 |
C9—C8 | 1.518 (3) | C4—C5 | 1.376 (4) |
C9—C10 | 1.520 (3) | C4—C3 | 1.385 (4) |
C9—H9 | 0.98 | C4—H4 | 0.93 |
C6—C1 | 1.400 (3) | C5—H5 | 0.93 |
C6—C5 | 1.401 (3) | C2—C3 | 1.372 (4) |
C6—C7 | 1.510 (3) | C2—H2 | 0.93 |
C1—C2 | 1.396 (3) | C3—H3 | 0.93 |
C1—C10 | 1.500 (3) | C12—H12A | 0.96 |
O2—C11 | 1.192 (3) | C12—H12B | 0.96 |
C11—C12 | 1.493 (3) | C12—H12C | 0.96 |
C7—C8 | 1.504 (3) | ||
C11—O1—C8 | 115.45 (18) | C7—C8—H8 | 108.2 |
C8—C9—C10 | 109.28 (18) | C9—C8—H8 | 108.2 |
C8—C9—Cl2 | 110.77 (17) | C1—C10—C9 | 114.21 (19) |
C10—C9—Cl2 | 108.22 (16) | C1—C10—Cl1 | 110.26 (16) |
C8—C9—H9 | 109.5 | C9—C10—Cl1 | 106.55 (16) |
C10—C9—H9 | 109.5 | C1—C10—H10 | 108.6 |
Cl2—C9—H9 | 109.5 | C9—C10—H10 | 108.6 |
C1—C6—C5 | 118.2 (2) | Cl1—C10—H10 | 108.6 |
C1—C6—C7 | 122.58 (19) | C5—C4—C3 | 120.4 (2) |
C5—C6—C7 | 119.2 (2) | C5—C4—H4 | 119.8 |
C2—C1—C6 | 119.8 (2) | C3—C4—H4 | 119.8 |
C2—C1—C10 | 119.1 (2) | C4—C5—C6 | 121.0 (2) |
C6—C1—C10 | 121.1 (2) | C4—C5—H5 | 119.5 |
O2—C11—O1 | 123.5 (2) | C6—C5—H5 | 119.5 |
O2—C11—C12 | 125.1 (2) | C3—C2—C1 | 121.0 (2) |
O1—C11—C12 | 111.4 (2) | C3—C2—H2 | 119.5 |
C8—C7—C6 | 110.88 (19) | C1—C2—H2 | 119.5 |
C8—C7—H7A | 109.5 | C2—C3—C4 | 119.5 (2) |
C6—C7—H7A | 109.5 | C2—C3—H3 | 120.3 |
C8—C7—H7B | 109.5 | C4—C3—H3 | 120.3 |
C6—C7—H7B | 109.5 | C11—C12—H12A | 109.5 |
H7A—C7—H7B | 108.1 | C11—C12—H12B | 109.5 |
O1—C8—C7 | 112.88 (18) | H12A—C12—H12B | 109.5 |
O1—C8—C9 | 106.93 (17) | C11—C12—H12C | 109.5 |
C7—C8—C9 | 112.26 (19) | H12A—C12—H12C | 109.5 |
O1—C8—H8 | 108.2 | H12B—C12—H12C | 109.5 |
C5—C6—C1—C2 | 1.2 (3) | C2—C1—C10—C9 | −167.4 (2) |
C7—C6—C1—C2 | −178.7 (2) | C6—C1—C10—C9 | 13.3 (3) |
C5—C6—C1—C10 | −179.4 (2) | C2—C1—C10—Cl1 | 72.7 (2) |
C7—C6—C1—C10 | 0.6 (3) | C6—C1—C10—Cl1 | −106.6 (2) |
C8—O1—C11—O2 | 3.4 (3) | C8—C9—C10—C1 | −43.7 (3) |
C8—O1—C11—C12 | −175.2 (2) | Cl2—C9—C10—C1 | 77.0 (2) |
C1—C6—C7—C8 | 17.2 (3) | C8—C9—C10—Cl1 | 78.3 (2) |
C5—C6—C7—C8 | −162.8 (2) | Cl2—C9—C10—Cl1 | −161.00 (12) |
C11—O1—C8—C7 | −79.8 (2) | C3—C4—C5—C6 | −0.2 (4) |
C11—O1—C8—C9 | 156.3 (2) | C1—C6—C5—C4 | −1.0 (3) |
C6—C7—C8—O1 | −170.16 (18) | C7—C6—C5—C4 | 179.0 (2) |
C6—C7—C8—C9 | −49.2 (3) | C6—C1—C2—C3 | −0.3 (4) |
C10—C9—C8—O1 | −172.10 (18) | C10—C1—C2—C3 | −179.6 (2) |
Cl2—C9—C8—O1 | 68.8 (2) | C1—C2—C3—C4 | −0.9 (4) |
C10—C9—C8—C7 | 63.6 (2) | C5—C4—C3—C2 | 1.2 (4) |
Cl2—C9—C8—C7 | −55.5 (2) |
Experimental details
Crystal data | |
Chemical formula | C12H12Cl2O2 |
Mr | 259.12 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.931 (5), 12.478 (5), 7.441 (4) |
β (°) | 101.040 (5) |
V (Å3) | 1178.4 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Rigaku R-AXIS conversion diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.897, 0.898 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34473, 3627, 2486 |
Rint | 0.083 |
(sin θ/λ)max (Å−1) | 0.718 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.154, 1.09 |
No. of reflections | 3627 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.34 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors are indebted to the Department of Chemistry and Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Frimer, A. A. (1985a). Singlet Oxygen, Vol. II, Part 1. Boca Raton: CRC Press. Google Scholar
Frimer, A. A. (1985b). Singlet Oxygen, Vol. III, Part 2. Boca Raton: CRC Press. Google Scholar
Kishali, N., Sahin, E. & Kara, Y. (2006a). Org. Lett. 2006, 60, 1791–1793. Google Scholar
Kishali, N., Sahin, E. & Kara, Y. (2006b). Helv. Chim. Acta, 89, 1246–1253. Web of Science CSD CrossRef Google Scholar
March, J. & Smith, M. B. (2001). Advanced Organic Chemistry. New York: John Wiley and Sons. Google Scholar
McBride, C. M., Chrisman, W., Harris, C. E. & Singaram, B. (1999). Tetrahedron Lett. 40, 45–48. Web of Science CrossRef CAS Google Scholar
Metha, G. & Ramesh, S. S. (2003). Tetrahedron Lett. 44, 3105–3108. Google Scholar
Metha, G. & Ramesh, S. S. (2005). Eur. J. Org. Chem. pp. 2225–2238. Google Scholar
Metha, G., Ramesh, S. S. & Bera, M. K. (2003). Chem. Eur. J. 9, 2264–2272. PubMed Google Scholar
Patai, S. (1983). Editor. The Chemistry of Functional Groups, Peroxides. New York: Wiley. Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Ros, A., Magriz, A., Dietrich, H., Fernandez, R., Alvarez, E. & Lassaletta, J. M. (2006). Org. Lett. 8, 127–130. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wasserman, H. H. & Murray, W. M. (1979). Editors. Singlet Oxygen. New York: Academic Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxyfunctionalization of organic unsaturated molecules are efficiently performed by an oxygen atom. It has been reported that the main reactions of singlet oxygen are cycloaddition and ene-reaction (Frimer, 1985a,b; Patai 1983; Wasserman & Murray, 1979). We have successively used isotetralin (1,4,5,8-tetrahydronaphthalene) for a short and stereocontrolled synthesis of a new class of bis-endoperoxide (Kishali et al., 2006a) and the interesting chlorination product, (2S*,3S*,4S*)-3,4-dichloro-1,2,3,4,5,8-hexahydro naphthalen-2-yl acetate (Kishali et al., 2006b), cf. Fig. 3). A multistep procedure for the preparation of a new family of annulated inositols from tetrahydronaphthalene has been developed (Metha & Ramesh, 2003, 2005; Metha et al., 2003). Vicinal halohydrins are versatile building blocks and key intermediates for the synthesis of many bioactive molecules (Ros et al., 2006).
We aimed to synthesize the polyhydroxyhalohidrins from (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4, but reaction of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4 gave a very interesting and unexpected product (I) including an aromatic ring.
Potassium permanganate, a very oxidizing agent can be used to oxidize alkenes to diols (March & Smith, 2001). Limiting the reaction to hydroxylation alone is often difficult, and it is usually attempted by using a cold, diluted and basic KMnO4 solution. Potassium permanganate, when supported on alumina and used in acetone, reacts very differently than potassium permanganate in aqueous solution. The synthesis of benzene derivatives from 1,4-cyclohexadienes by using KMnO4—Al2O3 is already known in the literature (McBride et al., 1999). (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate was synthesized as described in the literature (Kishali et al., 2006b). We expected the formation of a diol from reaction of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4, but instead the formation of (I) was detected.
The bicyclic skeleton contains a cyclohexene and a benzene ring sharing a common C?C bond [C1—C6=1.400 (3) Å] (Fig. 1). The Cl atoms are trans-positioned. C10—Cl1 and C9—Cl2 bond lengths are 1.827 (3) and 1.802 (3) Å, respectively. The three stereogenic centres C2, C3, and C4 are of the same configuration; during crystallization the racemization occurred. All these values are comparable with our previous structure (C12H14O2Cl2) (Kishali et al., 2006b), in which, only the difference, hexadien moiety exists instead of benzene in the carbocyclic ring. Crystal packing is dominated by van der Waals contacts.