organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-3,4-trans-Di­chloro-1,2,3,4-tetra­hydro-2-naphthyl acetate

aDepartment of Chemistry, Faculty of Science, Atatürk University, 25240-Erzurum, Turkey
*Correspondence e-mail: ertan@atauni.edu.tr

(Received 10 July 2008; accepted 30 October 2008; online 8 November 2008)

The title compound, C12H12Cl2O2, has a bicyclic skeleton containing cyclo­hexene and benzene fragments. The cyclo­hexene ring adopts a half-chair conformation with displacements of two atoms out of the least-squares plane of 0.311 (2) and −0.336 (2) Å. The Cl atoms are trans-positioned.

Related literature

For related literature, see: Frimer (1985a[Frimer, A. A. (1985a). Singlet Oxygen, Vol. II, Part 1. Boca Raton: CRC Press.],b[Frimer, A. A. (1985b). Singlet Oxygen, Vol. III, Part 2. Boca Raton: CRC Press.]); March & Smith (2001[March, J. & Smith, M. B. (2001). Advanced Organic Chemistry. New York: John Wiley and Sons.]); McBride et al. (1999[McBride, C. M., Chrisman, W., Harris, C. E. & Singaram, B. (1999). Tetrahedron Lett. 40, 45-48.]); Metha & Ramesh (2003[Metha, G. & Ramesh, S. S. (2003). Tetrahedron Lett. 44, 3105-3108.], 2005[Metha, G. & Ramesh, S. S. (2005). Eur. J. Org. Chem. pp. 2225-2238.]); Metha et al. (2003[Metha, G., Ramesh, S. S. & Bera, M. K. (2003). Chem. Eur. J. 9, 2264-2272.]); Patai (1983[Patai, S. (1983). Editor. The Chemistry of Functional Groups, Peroxides. New York: Wiley.]); Ros et al. (2006[Ros, A., Magriz, A., Dietrich, H., Fernandez, R., Alvarez, E. & Lassaletta, J. M. (2006). Org. Lett. 8, 127-130.]); Wasserman & Murray (1979[Wasserman, H. H. & Murray, W. M. (1979). Editors. Singlet Oxygen. New York: Academic Press.]). For related structures, see: Kishali et al. (2006a[Kishali, N., Sahin, E. & Kara, Y. (2006a). Org. Lett. 2006, 60, 1791-1793.],b[Kishali, N., Sahin, E. & Kara, Y. (2006b). Helv. Chim. Acta, 89, 1246-1253.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12Cl2O2

  • Mr = 259.12

  • Monoclinic, P 21 /c

  • a = 12.931 (5) Å

  • b = 12.478 (5) Å

  • c = 7.441 (4) Å

  • β = 101.040 (5)°

  • V = 1178.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku R-AXIS conversion diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.897, Tmax = 0.898

  • 34473 measured reflections

  • 3627 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.083

  • 25 standard reflections every 200 reflections intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.154

  • S = 1.09

  • 3627 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oxyfunctionalization of organic unsaturated molecules are efficiently performed by an oxygen atom. It has been reported that the main reactions of singlet oxygen are cycloaddition and ene-reaction (Frimer, 1985a,b; Patai 1983; Wasserman & Murray, 1979). We have successively used isotetralin (1,4,5,8-tetrahydronaphthalene) for a short and stereocontrolled synthesis of a new class of bis-endoperoxide (Kishali et al., 2006a) and the interesting chlorination product, (2S*,3S*,4S*)-3,4-dichloro-1,2,3,4,5,8-hexahydro naphthalen-2-yl acetate (Kishali et al., 2006b), cf. Fig. 3). A multistep procedure for the preparation of a new family of annulated inositols from tetrahydronaphthalene has been developed (Metha & Ramesh, 2003, 2005; Metha et al., 2003). Vicinal halohydrins are versatile building blocks and key intermediates for the synthesis of many bioactive molecules (Ros et al., 2006).

We aimed to synthesize the polyhydroxyhalohidrins from (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4, but reaction of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4 gave a very interesting and unexpected product (I) including an aromatic ring.

Potassium permanganate, a very oxidizing agent can be used to oxidize alkenes to diols (March & Smith, 2001). Limiting the reaction to hydroxylation alone is often difficult, and it is usually attempted by using a cold, diluted and basic KMnO4 solution. Potassium permanganate, when supported on alumina and used in acetone, reacts very differently than potassium permanganate in aqueous solution. The synthesis of benzene derivatives from 1,4-cyclohexadienes by using KMnO4—Al2O3 is already known in the literature (McBride et al., 1999). (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate was synthesized as described in the literature (Kishali et al., 2006b). We expected the formation of a diol from reaction of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4, but instead the formation of (I) was detected.

The bicyclic skeleton contains a cyclohexene and a benzene ring sharing a common C?C bond [C1—C6=1.400 (3) Å] (Fig. 1). The Cl atoms are trans-positioned. C10—Cl1 and C9—Cl2 bond lengths are 1.827 (3) and 1.802 (3) Å, respectively. The three stereogenic centres C2, C3, and C4 are of the same configuration; during crystallization the racemization occurred. All these values are comparable with our previous structure (C12H14O2Cl2) (Kishali et al., 2006b), in which, only the difference, hexadien moiety exists instead of benzene in the carbocyclic ring. Crystal packing is dominated by van der Waals contacts.

Related literature top

For related literature, see: Frimer (1985a,b); March & Smith (2001); McBride et al. (1999); Metha & Ramesh (2003, 2005); Metha et al. (2003); Patai (1983); Ros et al. (2006); Wasserman & Murray (1979). For related structures, see: Kishali et al. (2006a,b)

Experimental top

3,4-Dichloro-1, 2, 3, 4-tetrahydro-naphtahalen-2-yl acetate was prepared as follows. To a magnetically stirred acetone solution (25 ml of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate (260 mg, 1 mmol) was added a solution of KMnO4 (158 mg, 1 mmol) and MgSO4 (144 mg, 1.2 mmol) in water (20 ml) at 253 K during 5 h. After the addition was completed, the reaction mixture was stirred for an additional 15 h at the given temperature and then filtered. The filtrate was concentrated to 20 ml by evaporation. The aqueous solution was extracted with ethyl acetate (3x30 ml) and the extract were dried (Na2SO4). Evaporation of the solvent gave racemic mixture of compound I. It was separated by column chromatography, eluting with ethylacetate/hexanes (120 mg, 42%, colourless solid). Colourless solid from CH2Cl2/hexane. m. p: 348–349 K. 1H-NMR (400 MHz, CDCl3, p.p.m.): 7.39–7.12 (m, 4H), 5.78 (m, 1H-C(2)), 5.35 (d, J = 3.3, 1H-C(4)), 4.74 (t, J = 2.9, 1H-C(3)), 3.2 (m, 2H-C(1)), 2.14 (s, 3H-C(Ac)). 13C-NMR (100 MHz, CDCl3, p.p.m.):170.4, 132.9, 131.7, 130.9, 129.5, 129.3, 127.6, 67.3, 61.3, 60.1, 30.2, 30.0, 21.3. calcd C 55.62, H 4.67; found C 55.87, H 4.89.

Refinement top

H atoms were placed in geometrically idealized positions (C—H=0.93–0.98 Å) and treated as riding, with Uiso(H)=1.2Ueq(C)(for methine and methylene) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The preparation of the title compound.
rac-3,4-trans-Dichloro-1,2,3,4-tetrahydro-2-naphthyl acetate top
Crystal data top
C12H12Cl2O2F(000) = 536
Mr = 259.12Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6382 reflections
a = 12.931 (5) Åθ = 2.3–30.6°
b = 12.478 (5) ŵ = 0.53 mm1
c = 7.441 (4) ÅT = 293 K
β = 101.040 (5)°Needle, pale white
V = 1178.4 (9) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku R-AXIS conversion
diffractometer
Rint = 0.083
dtprofit.ref scansθmax = 30.7°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1818
Tmin = 0.897, Tmax = 0.898k = 1717
34473 measured reflectionsl = 1010
3627 independent reflections25 standard reflections every 200 reflections
2486 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.2956P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.21 e Å3
3627 reflectionsΔρmin = 0.34 e Å3
146 parameters
Crystal data top
C12H12Cl2O2V = 1178.4 (9) Å3
Mr = 259.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.931 (5) ŵ = 0.53 mm1
b = 12.478 (5) ÅT = 293 K
c = 7.441 (4) Å0.2 × 0.2 × 0.2 mm
β = 101.040 (5)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
2486 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.083
Tmin = 0.897, Tmax = 0.89825 standard reflections every 200 reflections
34473 measured reflections intensity decay: 3%
3627 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
3627 reflectionsΔρmin = 0.34 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22319 (6)0.59964 (5)0.18471 (9)0.0666 (2)
Cl20.12465 (5)0.59224 (5)0.70388 (10)0.0667 (2)
O10.13535 (12)0.35895 (13)0.5577 (2)0.0535 (4)
O20.23303 (14)0.22818 (15)0.4683 (3)0.0722 (5)
C10.34102 (17)0.62147 (18)0.5296 (3)0.0486 (5)
C20.40917 (19)0.7052 (2)0.5078 (3)0.0580 (6)
H20.38430.76230.43150.07*
C30.5123 (2)0.7044 (2)0.5973 (4)0.0646 (7)
H30.55730.76010.58040.078*
C40.5489 (2)0.6200 (2)0.7129 (4)0.0636 (7)
H40.61840.61970.77560.076*
C50.48316 (19)0.5365 (2)0.7357 (3)0.0577 (6)
H50.50890.48020.81350.069*
C60.37804 (17)0.53492 (18)0.6436 (3)0.0478 (5)
C70.30921 (18)0.44074 (19)0.6704 (3)0.0533 (5)
H7A0.34890.37480.66960.064*
H7B0.28830.44670.78840.064*
C80.21251 (17)0.43671 (18)0.5214 (3)0.0483 (5)
H80.23430.41660.40690.058*
C90.15676 (17)0.54420 (18)0.4929 (3)0.0496 (5)
H90.09210.53690.40050.06*
C100.22906 (18)0.62559 (18)0.4281 (3)0.0512 (5)
H100.20120.69750.44160.061*
C110.15545 (19)0.25602 (19)0.5198 (3)0.0546 (6)
C120.0677 (2)0.1837 (2)0.5466 (4)0.0707 (7)
H12A0.04070.20660.65190.106*
H12B0.09340.11160.56480.106*
H12C0.01240.18650.44020.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0761 (5)0.0694 (4)0.0518 (4)0.0055 (3)0.0059 (3)0.0081 (3)
Cl20.0632 (4)0.0683 (4)0.0735 (5)0.0053 (3)0.0256 (3)0.0070 (3)
O10.0468 (9)0.0490 (9)0.0664 (10)0.0052 (7)0.0152 (8)0.0032 (7)
O20.0656 (11)0.0582 (11)0.0966 (15)0.0020 (9)0.0247 (10)0.0128 (10)
C10.0485 (12)0.0474 (11)0.0511 (12)0.0018 (9)0.0125 (10)0.0053 (9)
C20.0639 (15)0.0509 (13)0.0615 (14)0.0085 (11)0.0179 (12)0.0030 (11)
C30.0614 (15)0.0659 (16)0.0701 (16)0.0204 (12)0.0216 (13)0.0162 (13)
C40.0460 (13)0.0794 (18)0.0653 (16)0.0074 (12)0.0108 (12)0.0163 (13)
C50.0487 (13)0.0634 (15)0.0601 (14)0.0002 (11)0.0082 (11)0.0047 (11)
C60.0444 (11)0.0518 (12)0.0482 (12)0.0019 (9)0.0114 (9)0.0028 (9)
C70.0474 (12)0.0509 (12)0.0605 (14)0.0011 (10)0.0076 (11)0.0062 (11)
C80.0430 (11)0.0455 (11)0.0579 (13)0.0031 (9)0.0131 (10)0.0016 (10)
C90.0438 (11)0.0513 (12)0.0532 (12)0.0022 (9)0.0083 (10)0.0018 (10)
C100.0533 (13)0.0455 (11)0.0544 (13)0.0019 (9)0.0094 (10)0.0015 (10)
C110.0545 (13)0.0508 (13)0.0566 (14)0.0052 (10)0.0055 (11)0.0025 (10)
C120.0676 (16)0.0600 (16)0.0823 (19)0.0171 (13)0.0092 (14)0.0069 (14)
Geometric parameters (Å, º) top
Cl1—C101.827 (3)C7—H7A0.97
Cl2—C91.802 (3)C7—H7B0.97
O1—C111.351 (3)C8—H80.98
O1—C81.454 (3)C10—H100.98
C9—C81.518 (3)C4—C51.376 (4)
C9—C101.520 (3)C4—C31.385 (4)
C9—H90.98C4—H40.93
C6—C11.400 (3)C5—H50.93
C6—C51.401 (3)C2—C31.372 (4)
C6—C71.510 (3)C2—H20.93
C1—C21.396 (3)C3—H30.93
C1—C101.500 (3)C12—H12A0.96
O2—C111.192 (3)C12—H12B0.96
C11—C121.493 (3)C12—H12C0.96
C7—C81.504 (3)
C11—O1—C8115.45 (18)C7—C8—H8108.2
C8—C9—C10109.28 (18)C9—C8—H8108.2
C8—C9—Cl2110.77 (17)C1—C10—C9114.21 (19)
C10—C9—Cl2108.22 (16)C1—C10—Cl1110.26 (16)
C8—C9—H9109.5C9—C10—Cl1106.55 (16)
C10—C9—H9109.5C1—C10—H10108.6
Cl2—C9—H9109.5C9—C10—H10108.6
C1—C6—C5118.2 (2)Cl1—C10—H10108.6
C1—C6—C7122.58 (19)C5—C4—C3120.4 (2)
C5—C6—C7119.2 (2)C5—C4—H4119.8
C2—C1—C6119.8 (2)C3—C4—H4119.8
C2—C1—C10119.1 (2)C4—C5—C6121.0 (2)
C6—C1—C10121.1 (2)C4—C5—H5119.5
O2—C11—O1123.5 (2)C6—C5—H5119.5
O2—C11—C12125.1 (2)C3—C2—C1121.0 (2)
O1—C11—C12111.4 (2)C3—C2—H2119.5
C8—C7—C6110.88 (19)C1—C2—H2119.5
C8—C7—H7A109.5C2—C3—C4119.5 (2)
C6—C7—H7A109.5C2—C3—H3120.3
C8—C7—H7B109.5C4—C3—H3120.3
C6—C7—H7B109.5C11—C12—H12A109.5
H7A—C7—H7B108.1C11—C12—H12B109.5
O1—C8—C7112.88 (18)H12A—C12—H12B109.5
O1—C8—C9106.93 (17)C11—C12—H12C109.5
C7—C8—C9112.26 (19)H12A—C12—H12C109.5
O1—C8—H8108.2H12B—C12—H12C109.5
C5—C6—C1—C21.2 (3)C2—C1—C10—C9167.4 (2)
C7—C6—C1—C2178.7 (2)C6—C1—C10—C913.3 (3)
C5—C6—C1—C10179.4 (2)C2—C1—C10—Cl172.7 (2)
C7—C6—C1—C100.6 (3)C6—C1—C10—Cl1106.6 (2)
C8—O1—C11—O23.4 (3)C8—C9—C10—C143.7 (3)
C8—O1—C11—C12175.2 (2)Cl2—C9—C10—C177.0 (2)
C1—C6—C7—C817.2 (3)C8—C9—C10—Cl178.3 (2)
C5—C6—C7—C8162.8 (2)Cl2—C9—C10—Cl1161.00 (12)
C11—O1—C8—C779.8 (2)C3—C4—C5—C60.2 (4)
C11—O1—C8—C9156.3 (2)C1—C6—C5—C41.0 (3)
C6—C7—C8—O1170.16 (18)C7—C6—C5—C4179.0 (2)
C6—C7—C8—C949.2 (3)C6—C1—C2—C30.3 (4)
C10—C9—C8—O1172.10 (18)C10—C1—C2—C3179.6 (2)
Cl2—C9—C8—O168.8 (2)C1—C2—C3—C40.9 (4)
C10—C9—C8—C763.6 (2)C5—C4—C3—C21.2 (4)
Cl2—C9—C8—C755.5 (2)

Experimental details

Crystal data
Chemical formulaC12H12Cl2O2
Mr259.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.931 (5), 12.478 (5), 7.441 (4)
β (°) 101.040 (5)
V3)1178.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku R-AXIS conversion
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.897, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
34473, 3627, 2486
Rint0.083
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.154, 1.09
No. of reflections3627
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.34

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are indebted to the Department of Chemistry and Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrimer, A. A. (1985a). Singlet Oxygen, Vol. II, Part 1. Boca Raton: CRC Press.  Google Scholar
First citationFrimer, A. A. (1985b). Singlet Oxygen, Vol. III, Part 2. Boca Raton: CRC Press.  Google Scholar
First citationKishali, N., Sahin, E. & Kara, Y. (2006a). Org. Lett. 2006, 60, 1791–1793.  Google Scholar
First citationKishali, N., Sahin, E. & Kara, Y. (2006b). Helv. Chim. Acta, 89, 1246–1253.  Web of Science CSD CrossRef Google Scholar
First citationMarch, J. & Smith, M. B. (2001). Advanced Organic Chemistry. New York: John Wiley and Sons.  Google Scholar
First citationMcBride, C. M., Chrisman, W., Harris, C. E. & Singaram, B. (1999). Tetrahedron Lett. 40, 45–48.  Web of Science CrossRef CAS Google Scholar
First citationMetha, G. & Ramesh, S. S. (2003). Tetrahedron Lett. 44, 3105–3108.  Google Scholar
First citationMetha, G. & Ramesh, S. S. (2005). Eur. J. Org. Chem. pp. 2225–2238.  Google Scholar
First citationMetha, G., Ramesh, S. S. & Bera, M. K. (2003). Chem. Eur. J. 9, 2264–2272.  PubMed Google Scholar
First citationPatai, S. (1983). Editor. The Chemistry of Functional Groups, Peroxides. New York: Wiley.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRos, A., Magriz, A., Dietrich, H., Fernandez, R., Alvarez, E. & Lassaletta, J. M. (2006). Org. Lett. 8, 127–130.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasserman, H. H. & Murray, W. M. (1979). Editors. Singlet Oxygen. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds