metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1622-m1623

Di­aqua-2κ2O-bis­­(μ-1-oxido-2-naphtho­ato)-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis­­(1-oxido-2-naphthoato)-1κ1O2,O2;3κ2O1,O2-hexa­pyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III) pyridine disolvate dihydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and bDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 26 July 2008; accepted 18 November 2008; online 26 November 2008)

The title complex, [Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5N, is a trinuclear mixed oxidation state complex of [\overline1] symmetry. The three Mn atoms are six-coordinated in the shape of distorted octa­hedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water mol­ecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H⋯π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001) is formed by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the crystal synthesis of metal complexes with hydroxy­naphthoates, see: Schmidt et al. (2005[Schmidt, M. U., Alig, E., Fink, L., Bolte, M., Panisch, R., Pashchenko, V., Wolf, B. & Lang, M. (2005). Acta Cryst. C61, m361-m364.]); Ohki et al. (1987[Ohki, Y., Suzuki, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1543-1545.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5N

  • Mr = 1614.32

  • Triclinic, [P \overline 1]

  • a = 9.962 (3) Å

  • b = 10.170 (3) Å

  • c = 19.812 (5) Å

  • α = 77.624 (3)°

  • β = 89.053 (4)°

  • γ = 85.370 (4)°

  • V = 1954.2 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 298 (2) K

  • 0.45 × 0.44 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.790, Tmax = 0.917

  • 10152 measured reflections

  • 6766 independent reflections

  • 3917 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.154

  • S = 1.00

  • 6766 reflections

  • 502 parameters

  • 744 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 2.180 (2)
Mn1—O7 2.198 (2)
Mn1—N1 2.268 (3)
Mn2—O6 1.854 (2)
Mn2—O3 1.874 (2)
Mn2—O1 1.891 (2)
Mn2—O4 1.909 (2)
Mn2—N3 2.321 (4)
Mn2—N2 2.349 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O8i 0.85 2.03 2.799 150
O8—H8A⋯O5ii 0.85 2.04 2.889 178
O8—H8B⋯O5iii 0.85 2.13 2.981 178
C31—H31⋯Cgiv 0.93 3.22 3.847 127
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+2, -z+2. Cg is the centroid of the N1/C23–C27 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multi-nuclear coordinated polymer attracted more attention in coordination chemistry. But transition metal complexes with hydroxynaphthoates as ligand have rarely been synthesized or crystallized except for some lanthanoids (Ohki et al., 1987) and manganese complexes (Schmidt et al., 2005). In this paper the synthesis of the title complex [Mn3(C11H6O3)4(C5H5N)6(H2O)2] (H2O)2(C5H5N)2was reported. Black-brown crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the mother liquid.

The title complex is centrosymmetrical with Mn(II)1 llocated at an inversion centre (Fig. 1, Table 1). Mn(II) was partially oxidized into Mn(III). The three Mn atoms are coordinated octahedrall by four O atoms in the equatorial plane and two pyridine N atoms in axial positions. Mn(II)1 is coordinated by two water molecules and two carboxyl O atoms where ligands act as monodentate bridnging towards Mn(III). The octahedral coordination is completed by two pyridne ligands. Mn(III)2 and Mn(III)2 A reveal the four O atoms from bidentate ligands and two axially positioned pyridine ligands. In the structure, there are intramolecular C—H···π interactions between axially positioned py ligands (Table 2). The complex exhibits a two-dimensional hydrogen bonding network via intermolecular interactions O—H..O between coordinated and solvent water molecules, and solvent water and ligand carbonyl group (Table 1, Fig. 2).

Related literature top

For the crystal synthesis of metal complexes with hydroxynaphthoates, see: Schmidt et al. (2005); Ohki et al. (1987).

Experimental top

MnCl2 4H2O (0.2 mmol 0.040 g) was dissolved in 5 a ml MeOH and a solution of (0.15 mmol 0.0305 g) of 1-hydroxy-naphthoic acid and (0.30 mmol 0.02 g) MeONa in 10 ml py was added dropwise. The reaction mixture was stirred for 4 h until the solution colour became brown. The mixture was filtered and black-brown single crystals were obtained by slow evaporation of the mother liquid for three weeks at room temperature. m.p.>573 K. Elemental analysis for C84H72Mn3N8O16 calculated: C 62.50, H 4.50 N 6.94%; found: C 62.43, H 4.23, N 6.81%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.93 Å (Phenyl and water) [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the complex showing the atomic numbering and the 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry operation (-x, -y, -z). C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of (I).
Diaqua-2κ2O-bis(µ-1-oxido-2-naphthoato)-1:2κ3O1, O2:O2';2:3κ3O2:O1,O2'-bis(1- oxido-2-naphthoato)-1κ2O1,O2;3κ2O1, O2-hexapyridine-1κ2N,2κ2N,3κ2N- trimanganese(II/III) pyridine disolvate dihydrate top
Crystal data top
[Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5NZ = 1
Mr = 1614.32F(000) = 835
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: 1-PMo Kα radiation, λ = 0.71073 Å
a = 9.962 (3) ÅCell parameters from 2741 reflections
b = 10.170 (3) Åθ = 2.5–24.1°
c = 19.812 (5) ŵ = 0.55 mm1
α = 77.624 (3)°T = 298 K
β = 89.053 (4)°Block, brown
γ = 85.370 (4)°0.45 × 0.44 × 0.16 mm
V = 1954.2 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6766 independent reflections
Radiation source: fine-focus sealed tube3917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.790, Tmax = 0.917k = 1211
10152 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.4474P]
where P = (Fo2 + 2Fc2)/3
6766 reflections(Δ/σ)max = 0.001
502 parametersΔρmax = 0.41 e Å3
744 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5Nγ = 85.370 (4)°
Mr = 1614.32V = 1954.2 (10) Å3
Triclinic, P1Z = 1
a = 9.962 (3) ÅMo Kα radiation
b = 10.170 (3) ŵ = 0.55 mm1
c = 19.812 (5) ÅT = 298 K
α = 77.624 (3)°0.45 × 0.44 × 0.16 mm
β = 89.053 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6766 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3917 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.917Rint = 0.028
10152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048744 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
6766 reflectionsΔρmin = 0.26 e Å3
502 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50001.00001.00000.0415 (2)
Mn20.31927 (6)0.89477 (5)0.79249 (3)0.0442 (2)
N10.6800 (3)1.1017 (3)0.94749 (15)0.0452 (8)
N20.5084 (4)0.9964 (3)0.73905 (17)0.0526 (9)
N30.1291 (4)0.7993 (3)0.84414 (19)0.0586 (10)
N40.3397 (9)0.2282 (9)0.4436 (5)0.181 (3)
O10.3432 (3)0.9767 (2)0.86811 (12)0.0504 (7)
O20.3692 (3)1.1346 (2)0.92360 (13)0.0473 (7)
O30.2133 (3)1.0462 (2)0.74539 (12)0.0461 (7)
O40.4274 (3)0.7444 (2)0.84399 (12)0.0516 (7)
O50.5211 (3)0.5389 (3)0.87570 (13)0.0647 (9)
O60.3025 (3)0.8103 (2)0.71921 (12)0.0485 (7)
O70.4426 (3)1.1701 (3)1.04953 (13)0.0540 (8)
H7A0.42531.24341.02010.065*
H7B0.50341.18061.07710.065*
O80.6500 (3)0.5604 (3)0.00202 (16)0.0808 (10)
H8A0.61070.55330.03460.097*
H8B0.59990.53170.03630.097*
C10.3224 (4)1.1007 (3)0.87274 (18)0.0366 (9)
C20.1979 (4)1.1666 (3)0.76049 (18)0.0358 (8)
C30.2463 (4)1.1986 (3)0.81975 (17)0.0358 (8)
C40.2202 (4)1.3317 (3)0.83051 (19)0.0431 (9)
H40.25281.35250.87040.052*
C50.1499 (4)1.4291 (4)0.7850 (2)0.0525 (11)
H50.13351.51510.79390.063*
C60.1009 (4)1.4007 (4)0.7235 (2)0.0453 (10)
C70.1253 (4)1.2701 (3)0.71042 (18)0.0402 (9)
C80.0810 (4)1.2435 (4)0.6485 (2)0.0518 (10)
H80.09551.15690.64020.062*
C90.0164 (5)1.3439 (4)0.6000 (2)0.0657 (13)
H90.00961.32630.55810.079*
C100.0104 (5)1.4724 (4)0.6134 (3)0.0733 (14)
H100.05691.53950.58090.088*
C110.0302 (4)1.5004 (4)0.6728 (2)0.0606 (12)
H110.01151.58690.68080.073*
C120.4649 (4)0.6277 (4)0.83032 (19)0.0453 (10)
C130.3609 (4)0.6937 (3)0.71167 (18)0.0381 (9)
C140.4379 (4)0.6037 (3)0.76172 (18)0.0411 (9)
C150.4924 (5)0.4784 (4)0.7471 (2)0.0562 (11)
H150.54410.41800.78040.067*
C160.4701 (5)0.4461 (4)0.6858 (2)0.0632 (12)
H160.50540.36310.67820.076*
C170.3950 (4)0.5346 (4)0.6335 (2)0.0511 (10)
C180.3395 (4)0.6602 (4)0.64584 (18)0.0418 (9)
C190.2650 (4)0.7498 (4)0.59377 (19)0.0510 (10)
H190.22900.83230.60180.061*
C200.2445 (5)0.7181 (5)0.5313 (2)0.0625 (12)
H200.19540.77870.49700.075*
C210.2978 (5)0.5939 (5)0.5194 (2)0.0700 (13)
H210.28310.57190.47710.084*
C220.3703 (5)0.5054 (5)0.5685 (2)0.0666 (12)
H220.40490.42340.55930.080*
C230.7989 (5)1.0328 (4)0.9457 (2)0.0593 (12)
H230.80720.94160.96680.071*
C240.9085 (5)1.0897 (5)0.9146 (3)0.0766 (14)
H240.99011.03830.91470.092*
C250.8976 (5)1.2238 (5)0.8829 (3)0.0782 (15)
H250.97111.26490.86070.094*
C260.7758 (5)1.2958 (5)0.8849 (3)0.0727 (14)
H260.76521.38730.86460.087*
C270.6708 (5)1.2312 (4)0.9171 (2)0.0558 (11)
H270.58821.28050.91790.067*
C280.5048 (5)1.0388 (5)0.6709 (2)0.0659 (12)
H280.43061.02110.64740.079*
C290.6030 (6)1.1066 (5)0.6333 (3)0.0772 (14)
H290.59661.13310.58550.093*
C300.7098 (6)1.1345 (5)0.6673 (3)0.0806 (15)
H300.77791.18220.64330.097*
C310.7167 (6)1.0922 (6)0.7368 (3)0.0860 (16)
H310.79011.10910.76110.103*
C320.6142 (6)1.0244 (5)0.7706 (3)0.0743 (14)
H320.61940.99660.81840.089*
C330.0188 (6)0.8033 (5)0.8077 (3)0.0890 (16)
H330.01840.84780.76150.107*
C340.0945 (7)0.7457 (7)0.8342 (4)0.116 (2)
H340.16990.74960.80660.139*
C350.0954 (8)0.6816 (7)0.9025 (5)0.121 (2)
H350.17090.64060.92230.145*
C360.0160 (9)0.6797 (7)0.9401 (4)0.116 (2)
H360.01840.63800.98680.139*
C370.1250 (6)0.7392 (5)0.9095 (3)0.0863 (16)
H370.20110.73710.93640.104*
C380.2680 (11)0.1573 (9)0.4938 (5)0.148 (3)
H380.29570.14350.53950.178*
C390.1524 (9)0.1041 (8)0.4777 (5)0.129 (3)
H390.10080.05460.51210.154*
C400.1193 (8)0.1246 (8)0.4157 (6)0.122 (2)
H400.04170.08760.40540.147*
C410.1857 (10)0.1948 (8)0.3629 (4)0.123 (2)
H410.15510.20680.31780.148*
C420.2955 (9)0.2465 (8)0.3768 (5)0.124 (2)
H420.34400.29600.34100.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0437 (6)0.0356 (4)0.0429 (5)0.0080 (4)0.0034 (4)0.0073 (4)
Mn20.0604 (5)0.0328 (3)0.0378 (3)0.0130 (3)0.0127 (3)0.0092 (2)
N10.042 (2)0.0400 (18)0.0497 (19)0.0071 (16)0.0019 (16)0.0046 (15)
N20.057 (2)0.054 (2)0.046 (2)0.0013 (18)0.0064 (18)0.0109 (16)
N30.067 (3)0.048 (2)0.058 (2)0.0035 (19)0.005 (2)0.0100 (18)
N40.188 (8)0.189 (8)0.167 (8)0.002 (6)0.045 (7)0.046 (6)
O10.075 (2)0.0348 (14)0.0398 (15)0.0160 (14)0.0166 (14)0.0110 (11)
O20.0583 (19)0.0387 (14)0.0457 (16)0.0068 (13)0.0129 (14)0.0137 (12)
O30.0611 (19)0.0338 (14)0.0426 (15)0.0101 (13)0.0202 (13)0.0097 (11)
O40.073 (2)0.0371 (14)0.0428 (15)0.0197 (14)0.0171 (14)0.0129 (12)
O50.100 (3)0.0412 (15)0.0468 (17)0.0294 (16)0.0212 (16)0.0079 (13)
O60.066 (2)0.0371 (14)0.0419 (15)0.0150 (13)0.0146 (13)0.0122 (11)
O70.065 (2)0.0497 (16)0.0483 (16)0.0146 (14)0.0200 (14)0.0168 (13)
O80.089 (3)0.073 (2)0.077 (2)0.010 (2)0.0011 (19)0.0094 (17)
C10.039 (2)0.0328 (19)0.038 (2)0.0040 (17)0.0018 (17)0.0089 (16)
C20.036 (2)0.0284 (18)0.0398 (19)0.0022 (16)0.0024 (16)0.0024 (15)
C30.034 (2)0.0323 (18)0.0386 (19)0.0007 (16)0.0040 (16)0.0039 (15)
C40.047 (2)0.035 (2)0.048 (2)0.0024 (18)0.0070 (18)0.0108 (17)
C50.057 (3)0.0304 (19)0.068 (3)0.0041 (19)0.005 (2)0.0097 (18)
C60.042 (2)0.0334 (19)0.054 (2)0.0041 (17)0.0057 (19)0.0019 (17)
C70.036 (2)0.0355 (19)0.045 (2)0.0013 (17)0.0079 (17)0.0000 (16)
C80.055 (3)0.045 (2)0.052 (2)0.001 (2)0.012 (2)0.0017 (18)
C90.069 (3)0.060 (3)0.061 (3)0.003 (2)0.021 (2)0.003 (2)
C100.074 (3)0.053 (3)0.078 (3)0.007 (2)0.027 (3)0.016 (2)
C110.059 (3)0.041 (2)0.074 (3)0.011 (2)0.013 (2)0.002 (2)
C120.059 (3)0.033 (2)0.042 (2)0.0077 (19)0.002 (2)0.0076 (17)
C130.043 (2)0.0323 (19)0.039 (2)0.0007 (17)0.0023 (17)0.0086 (15)
C140.047 (2)0.0343 (19)0.040 (2)0.0048 (18)0.0011 (18)0.0078 (16)
C150.068 (3)0.045 (2)0.055 (2)0.017 (2)0.006 (2)0.0174 (19)
C160.078 (3)0.047 (2)0.067 (3)0.016 (2)0.004 (2)0.026 (2)
C170.053 (3)0.053 (2)0.050 (2)0.002 (2)0.005 (2)0.0205 (19)
C180.042 (2)0.044 (2)0.041 (2)0.0040 (18)0.0031 (18)0.0136 (17)
C190.058 (3)0.049 (2)0.047 (2)0.001 (2)0.003 (2)0.0132 (18)
C200.072 (3)0.069 (3)0.049 (2)0.003 (2)0.008 (2)0.017 (2)
C210.076 (3)0.084 (3)0.057 (3)0.002 (3)0.004 (2)0.033 (2)
C220.076 (3)0.068 (3)0.063 (3)0.006 (2)0.003 (2)0.035 (2)
C230.048 (3)0.051 (2)0.075 (3)0.007 (2)0.001 (2)0.008 (2)
C240.047 (3)0.082 (3)0.095 (4)0.011 (3)0.005 (3)0.013 (3)
C250.054 (3)0.079 (3)0.095 (4)0.014 (3)0.012 (3)0.002 (3)
C260.063 (3)0.058 (3)0.089 (3)0.004 (3)0.006 (3)0.002 (3)
C270.052 (3)0.047 (2)0.065 (3)0.005 (2)0.003 (2)0.007 (2)
C280.074 (3)0.067 (3)0.055 (3)0.003 (3)0.005 (2)0.008 (2)
C290.084 (4)0.078 (3)0.065 (3)0.002 (3)0.006 (3)0.007 (3)
C300.073 (4)0.073 (3)0.092 (4)0.007 (3)0.018 (3)0.011 (3)
C310.065 (4)0.106 (4)0.092 (4)0.015 (3)0.006 (3)0.029 (3)
C320.072 (4)0.087 (3)0.064 (3)0.002 (3)0.007 (3)0.016 (3)
C330.074 (4)0.078 (4)0.111 (4)0.001 (3)0.003 (4)0.013 (3)
C340.078 (4)0.103 (5)0.168 (6)0.004 (4)0.007 (5)0.033 (4)
C350.103 (5)0.088 (4)0.171 (6)0.018 (4)0.064 (5)0.029 (4)
C360.131 (6)0.088 (4)0.120 (5)0.016 (4)0.044 (5)0.003 (4)
C370.101 (4)0.073 (3)0.081 (4)0.007 (3)0.018 (3)0.010 (3)
C380.141 (7)0.176 (7)0.120 (6)0.000 (6)0.013 (6)0.020 (5)
C390.110 (6)0.113 (5)0.152 (6)0.007 (4)0.033 (5)0.007 (5)
C400.086 (5)0.113 (5)0.171 (7)0.017 (4)0.006 (5)0.046 (5)
C410.115 (6)0.117 (5)0.133 (6)0.044 (5)0.016 (5)0.033 (4)
C420.121 (6)0.109 (5)0.133 (6)0.013 (5)0.028 (5)0.017 (4)
Geometric parameters (Å, º) top
Mn1—O22.180 (2)C14—C151.430 (5)
Mn1—O2i2.180 (2)C15—C161.350 (5)
Mn1—O7i2.198 (2)C15—H150.9300
Mn1—O72.198 (2)C16—C171.400 (5)
Mn1—N1i2.268 (3)C16—H160.9300
Mn1—N12.268 (3)C17—C221.413 (5)
Mn2—O61.854 (2)C17—C181.418 (5)
Mn2—O31.874 (2)C18—C191.400 (5)
Mn2—O11.891 (2)C19—C201.367 (5)
Mn2—O41.909 (2)C19—H190.9300
Mn2—N32.321 (4)C20—C211.395 (6)
Mn2—N22.349 (4)C20—H200.9300
N1—C271.322 (5)C21—C221.349 (6)
N1—C231.331 (5)C21—H210.9300
N2—C321.315 (6)C22—H220.9300
N2—C281.326 (5)C23—C241.353 (6)
N3—C371.309 (6)C23—H230.9300
N3—C331.319 (6)C24—C251.370 (6)
N4—C381.331 (10)C24—H240.9300
N4—C421.373 (10)C25—C261.370 (7)
O1—C11.284 (4)C25—H250.9300
O2—C11.242 (4)C26—C271.357 (6)
O3—C21.318 (4)C26—H260.9300
O4—C121.297 (4)C27—H270.9300
O5—C121.235 (4)C28—C291.361 (6)
O6—C131.316 (4)C28—H280.9300
O7—H7A0.8500C29—C301.350 (7)
O7—H7B0.8501C29—H290.9300
O8—H8A0.8500C30—C311.351 (7)
O8—H8B0.8500C30—H300.9300
C1—C31.458 (5)C31—C321.363 (7)
C2—C31.388 (5)C31—H310.9300
C2—C71.438 (5)C32—H320.9300
C3—C41.418 (5)C33—C341.359 (8)
C4—C51.346 (5)C33—H330.9300
C4—H40.9300C34—C351.371 (9)
C5—C61.413 (5)C34—H340.9300
C5—H50.9300C35—C361.343 (9)
C6—C71.408 (5)C35—H350.9300
C6—C111.416 (5)C36—C371.357 (8)
C7—C81.398 (5)C36—H360.9300
C8—C91.369 (5)C37—H370.9300
C8—H80.9300C38—C391.381 (10)
C9—C101.393 (6)C38—H380.9300
C9—H90.9300C39—C401.247 (10)
C10—C111.346 (6)C39—H390.9300
C10—H100.9300C40—C411.332 (10)
C11—H110.9300C40—H400.9300
C12—C141.464 (5)C41—C421.308 (10)
C13—C141.390 (5)C41—H410.9300
C13—C181.440 (5)C42—H420.9300
O2—Mn1—O2i180.00 (11)C13—C14—C15119.1 (3)
O2—Mn1—O7i103.30 (9)C13—C14—C12123.9 (3)
O2i—Mn1—O7i76.70 (9)C15—C14—C12117.0 (3)
O2—Mn1—O776.70 (9)C16—C15—C14121.2 (4)
O2i—Mn1—O7103.30 (9)C16—C15—H15119.4
O7i—Mn1—O7180.00 (10)C14—C15—H15119.4
O2—Mn1—N1i90.93 (11)C15—C16—C17121.6 (4)
O2i—Mn1—N1i89.07 (11)C15—C16—H16119.2
O7i—Mn1—N1i92.12 (11)C17—C16—H16119.2
O7—Mn1—N1i87.88 (11)C16—C17—C22123.4 (4)
O2—Mn1—N189.07 (11)C16—C17—C18119.0 (4)
O2i—Mn1—N190.93 (11)C22—C17—C18117.5 (4)
O7i—Mn1—N187.88 (11)C19—C18—C17119.5 (3)
O7—Mn1—N192.12 (11)C19—C18—C13121.0 (3)
N1i—Mn1—N1180.0C17—C18—C13119.5 (3)
O6—Mn2—O390.31 (10)C20—C19—C18121.0 (4)
O6—Mn2—O1177.65 (12)C20—C19—H19119.5
O3—Mn2—O191.78 (10)C18—C19—H19119.5
O6—Mn2—O492.30 (10)C19—C20—C21119.4 (4)
O3—Mn2—O4177.38 (10)C19—C20—H20120.3
O1—Mn2—O485.61 (10)C21—C20—H20120.3
O6—Mn2—N390.47 (13)C22—C21—C20121.0 (4)
O3—Mn2—N390.79 (13)C22—C21—H21119.5
O1—Mn2—N390.58 (13)C20—C21—H21119.5
O4—Mn2—N389.02 (13)C21—C22—C17121.5 (4)
O6—Mn2—N289.72 (12)C21—C22—H22119.3
O3—Mn2—N287.78 (12)C17—C22—H22119.3
O1—Mn2—N289.28 (12)N1—C23—C24122.9 (4)
O4—Mn2—N292.40 (12)N1—C23—H23118.6
N3—Mn2—N2178.56 (12)C24—C23—H23118.6
C27—N1—C23117.4 (4)C23—C24—C25119.2 (5)
C27—N1—Mn1121.4 (3)C23—C24—H24120.4
C23—N1—Mn1121.1 (3)C25—C24—H24120.4
C32—N2—C28116.2 (4)C26—C25—C24118.3 (5)
C32—N2—Mn2126.2 (3)C26—C25—H25120.8
C28—N2—Mn2117.3 (3)C24—C25—H25120.8
C37—N3—C33116.8 (5)C27—C26—C25118.8 (4)
C37—N3—Mn2122.8 (4)C27—C26—H26120.6
C33—N3—Mn2120.4 (4)C25—C26—H26120.6
C38—N4—C42118.3 (10)N1—C27—C26123.3 (4)
C1—O1—Mn2130.2 (2)N1—C27—H27118.3
C1—O2—Mn1123.5 (2)C26—C27—H27118.3
C2—O3—Mn2127.3 (2)N2—C28—C29124.0 (5)
C12—O4—Mn2130.9 (2)N2—C28—H28118.0
C13—O6—Mn2127.9 (2)C29—C28—H28118.0
Mn1—O7—H7A112.0C30—C29—C28118.2 (5)
Mn1—O7—H7B111.5C30—C29—H29120.9
H7A—O7—H7B109.6C28—C29—H29120.9
H8A—O8—H8B108.4C29—C30—C31119.2 (5)
O2—C1—O1118.0 (3)C29—C30—H30120.4
O2—C1—C3121.1 (3)C31—C30—H30120.4
O1—C1—C3120.9 (3)C30—C31—C32119.0 (5)
O3—C2—C3124.9 (3)C30—C31—H31120.5
O3—C2—C7115.8 (3)C32—C31—H31120.5
C3—C2—C7119.2 (3)N2—C32—C31123.4 (5)
C2—C3—C4119.3 (3)N2—C32—H32118.3
C2—C3—C1123.0 (3)C31—C32—H32118.3
C4—C3—C1117.7 (3)N3—C33—C34123.3 (6)
C5—C4—C3122.2 (3)N3—C33—H33118.3
C5—C4—H4118.9C34—C33—H33118.3
C3—C4—H4118.9C33—C34—C35118.7 (7)
C4—C5—C6120.0 (3)C33—C34—H34120.6
C4—C5—H5120.0C35—C34—H34120.6
C6—C5—H5120.0C36—C35—C34118.1 (7)
C7—C6—C5119.8 (3)C36—C35—H35121.0
C7—C6—C11117.9 (4)C34—C35—H35121.0
C5—C6—C11122.3 (4)C35—C36—C37119.4 (7)
C8—C7—C6119.6 (3)C35—C36—H36120.3
C8—C7—C2120.9 (3)C37—C36—H36120.3
C6—C7—C2119.4 (3)N3—C37—C36123.7 (6)
C9—C8—C7120.5 (4)N3—C37—H37118.2
C9—C8—H8119.7C36—C37—H37118.2
C7—C8—H8119.7N4—C38—C39119.8 (9)
C8—C9—C10119.9 (4)N4—C38—H38120.1
C8—C9—H9120.0C39—C38—H38120.1
C10—C9—H9120.0C40—C39—C38117.9 (9)
C11—C10—C9120.7 (4)C40—C39—H39121.0
C11—C10—H10119.7C38—C39—H39121.0
C9—C10—H10119.7C39—C40—C41125.5 (10)
C10—C11—C6121.2 (4)C39—C40—H40117.2
C10—C11—H11119.4C41—C40—H40117.2
C6—C11—H11119.4C42—C41—C40117.7 (9)
O5—C12—O4119.3 (3)C42—C41—H41121.1
O5—C12—C14121.5 (3)C40—C41—H41121.1
O4—C12—C14119.2 (3)C41—C42—N4120.6 (9)
O6—C13—C14125.1 (3)C41—C42—H42119.7
O6—C13—C18115.3 (3)N4—C42—H42119.7
C14—C13—C18119.6 (3)
O2—Mn1—N1—C2732.6 (3)C5—C6—C7—C21.1 (6)
O2i—Mn1—N1—C27147.4 (3)C11—C6—C7—C2179.5 (4)
O7i—Mn1—N1—C27136.0 (3)O3—C2—C7—C83.0 (5)
O7—Mn1—N1—C2744.0 (3)C3—C2—C7—C8176.7 (4)
N1i—Mn1—N1—C27153 (100)O3—C2—C7—C6178.2 (3)
O2—Mn1—N1—C23147.0 (3)C3—C2—C7—C62.1 (6)
O2i—Mn1—N1—C2333.0 (3)C6—C7—C8—C91.2 (6)
O7i—Mn1—N1—C2343.6 (3)C2—C7—C8—C9177.6 (4)
O7—Mn1—N1—C23136.4 (3)C7—C8—C9—C102.6 (7)
N1i—Mn1—N1—C2327 (100)C8—C9—C10—C112.0 (8)
O6—Mn2—N2—C32146.6 (4)C9—C10—C11—C60.1 (8)
O3—Mn2—N2—C32123.1 (4)C7—C6—C11—C101.2 (7)
O1—Mn2—N2—C3231.3 (4)C5—C6—C11—C10177.1 (4)
O4—Mn2—N2—C3254.3 (4)Mn2—O4—C12—O5170.7 (3)
N3—Mn2—N2—C32116 (5)Mn2—O4—C12—C148.4 (6)
O6—Mn2—N2—C2838.7 (3)Mn2—O6—C13—C146.7 (6)
O3—Mn2—N2—C2851.6 (3)Mn2—O6—C13—C18173.9 (3)
O1—Mn2—N2—C28143.4 (3)O6—C13—C14—C15178.2 (4)
O4—Mn2—N2—C28131.0 (3)C18—C13—C14—C151.1 (6)
N3—Mn2—N2—C2859 (5)O6—C13—C14—C120.2 (6)
O6—Mn2—N3—C37132.4 (4)C18—C13—C14—C12179.6 (4)
O3—Mn2—N3—C37137.3 (4)O5—C12—C14—C13171.8 (4)
O1—Mn2—N3—C3745.5 (4)O4—C12—C14—C137.2 (6)
O4—Mn2—N3—C3740.1 (4)O5—C12—C14—C156.7 (6)
N2—Mn2—N3—C37130 (5)O4—C12—C14—C15174.2 (4)
O6—Mn2—N3—C3347.2 (4)C13—C14—C15—C160.1 (7)
O3—Mn2—N3—C3343.1 (4)C12—C14—C15—C16178.5 (4)
O1—Mn2—N3—C33134.9 (4)C14—C15—C16—C171.2 (7)
O4—Mn2—N3—C33139.5 (4)C15—C16—C17—C22179.4 (5)
N2—Mn2—N3—C3350 (5)C15—C16—C17—C181.0 (7)
O6—Mn2—O1—C1137 (3)C16—C17—C18—C19179.6 (4)
O3—Mn2—O1—C115.6 (4)C22—C17—C18—C190.8 (6)
O4—Mn2—O1—C1164.6 (4)C16—C17—C18—C130.3 (6)
N3—Mn2—O1—C1106.4 (3)C22—C17—C18—C13179.4 (4)
N2—Mn2—O1—C172.1 (3)O6—C13—C18—C192.1 (5)
O2i—Mn1—O2—C1121 (100)C14—C13—C18—C19178.5 (4)
O7i—Mn1—O2—C112.9 (3)O6—C13—C18—C17178.1 (3)
O7—Mn1—O2—C1167.1 (3)C14—C13—C18—C171.3 (6)
N1i—Mn1—O2—C179.5 (3)C17—C18—C19—C200.3 (6)
N1—Mn1—O2—C1100.5 (3)C13—C18—C19—C20179.9 (4)
O6—Mn2—O3—C2166.6 (3)C18—C19—C20—C210.5 (7)
O1—Mn2—O3—C212.3 (3)C19—C20—C21—C220.6 (7)
O4—Mn2—O3—C217 (3)C20—C21—C22—C170.1 (8)
N3—Mn2—O3—C2102.9 (3)C16—C17—C22—C21179.7 (5)
N2—Mn2—O3—C276.9 (3)C18—C17—C22—C210.6 (7)
O6—Mn2—O4—C122.8 (4)C27—N1—C23—C240.0 (7)
O3—Mn2—O4—C12173 (3)Mn1—N1—C23—C24179.6 (4)
O1—Mn2—O4—C12178.3 (4)N1—C23—C24—C250.4 (8)
N3—Mn2—O4—C1287.6 (4)C23—C24—C25—C260.9 (8)
N2—Mn2—O4—C1292.6 (4)C24—C25—C26—C271.0 (8)
O3—Mn2—O6—C13175.2 (3)C23—N1—C27—C260.1 (6)
O1—Mn2—O6—C1323 (3)Mn1—N1—C27—C26179.7 (3)
O4—Mn2—O6—C134.9 (3)C25—C26—C27—N10.6 (7)
N3—Mn2—O6—C1394.0 (3)C32—N2—C28—C290.6 (7)
N2—Mn2—O6—C1387.5 (3)Mn2—N2—C28—C29175.9 (4)
Mn1—O2—C1—O16.0 (5)N2—C28—C29—C301.1 (8)
Mn1—O2—C1—C3174.0 (2)C28—C29—C30—C311.2 (8)
Mn2—O1—C1—O2166.6 (3)C29—C30—C31—C321.0 (8)
Mn2—O1—C1—C313.3 (5)C28—N2—C32—C310.4 (7)
Mn2—O3—C2—C37.9 (5)Mn2—N2—C32—C31175.2 (4)
Mn2—O3—C2—C7171.8 (2)C30—C31—C32—N20.7 (8)
O3—C2—C3—C4178.7 (4)C37—N3—C33—C341.8 (8)
C7—C2—C3—C41.7 (5)Mn2—N3—C33—C34177.8 (4)
O3—C2—C3—C10.5 (6)N3—C33—C34—C350.9 (10)
C7—C2—C3—C1179.1 (3)C33—C34—C35—C360.4 (10)
O2—C1—C3—C2176.8 (4)C34—C35—C36—C370.7 (11)
O1—C1—C3—C23.1 (6)C33—N3—C37—C361.5 (8)
O2—C1—C3—C44.0 (5)Mn2—N3—C37—C36178.2 (4)
O1—C1—C3—C4176.1 (4)C35—C36—C37—N30.2 (10)
C2—C3—C4—C50.2 (6)C42—N4—C38—C390.1 (13)
C1—C3—C4—C5179.4 (4)N4—C38—C39—C400.3 (14)
C3—C4—C5—C60.9 (6)C38—C39—C40—C410.6 (13)
C4—C5—C6—C70.4 (6)C39—C40—C41—C420.4 (13)
C4—C5—C6—C11177.9 (4)C40—C41—C42—N40.0 (12)
C5—C6—C7—C8177.7 (4)C38—N4—C42—C410.2 (13)
C11—C6—C7—C80.6 (6)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O8ii0.852.032.799150
O8—H8A···O5iii0.852.042.889178
O8—H8B···O5iv0.852.132.981178
C31—H31···Cgv0.933.223.847127
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5N
Mr1614.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.962 (3), 10.170 (3), 19.812 (5)
α, β, γ (°)77.624 (3), 89.053 (4), 85.370 (4)
V3)1954.2 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.45 × 0.44 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.790, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
10152, 6766, 3917
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.154, 1.00
No. of reflections6766
No. of parameters502
No. of restraints744
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O22.180 (2)Mn2—O11.891 (2)
Mn1—O72.198 (2)Mn2—O41.909 (2)
Mn1—N12.268 (3)Mn2—N32.321 (4)
Mn2—O61.854 (2)Mn2—N22.349 (4)
Mn2—O31.874 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O8i0.852.0322.799149.55
O8—H8A···O5ii0.852.0392.889178.3
O8—H8B···O5iii0.852.1312.981178.24
C31—H31···Cgiv0.933.2183.847126.82
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+2, y+2, z+2.
 

Acknowledgements

We acknowledge the Natural Science Foundation of Liaocheng University (grant No. X051002) for support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOhki, Y., Suzuki, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1543–1545.  CrossRef CAS Web of Science Google Scholar
First citationSchmidt, M. U., Alig, E., Fink, L., Bolte, M., Panisch, R., Pashchenko, V., Wolf, B. & Lang, M. (2005). Acta Cryst. C61, m361–m364.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1622-m1623
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds