organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis[2-(3,4-di­butyl-2-thienylethyn­yl)]biphen­yl

aCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, People's Republic of China, bCollege of Bioscience and Biotechnology, Hunan Agricultural University, Hanan 410128, People's Republic of China, and c106 Group, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*Correspondence e-mail: liulei@iccas.ac.cn

(Received 11 August 2008; accepted 4 November 2008; online 13 November 2008)

The mol­ecule of the title compound, C40H46S2, reveals Ci symmetry. An inversion centre is located at the mid-point of the C—C bond of the biphenyl unit; the asymmetric unit comprises one-half of the mol­ecule. The conjugated backbone is nearly planar, with a mean deviation of 0.041 Å.

Related literature

For general background, see: Brad Wan et al. (2000[Brad Wan, W., Brand, S. C., Park, J. J. & Haley, M. (2000). Chem. Eur. J. 6, 2044-2052.]); Cornil et al. (2001[Cornil, J., Calbert, J. P. & Bredas, J. L. (2001). J. Am. Chem. Soc. 123, 1250-1251.]); Grosshenny et al. (1997[Grosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem. 62, 1491-1500.]); Huang & Tour (1998[Huang, S. & Tour, J. M. (1998). Polym. Prepr. 39, 525-526.]); Tour (1996[Tour, J. M. (1996). Chem. Rev. 96, 537-553.]). For related structures, see: Baudour (1972[Baudour, J. L. (1972). Acta Cryst. B28, 1649-1656.]); Charbonneau & Delugeard (1977[Charbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586-1588.]); Domenicano et al. (1975[Domenicano, A., Vaciago, A. & Coulson, C. A. (1975). Acta Cryst. B31, 221-234.]); Robertson (1961[Robertson, G. B. (1961). Nature (London), 191, 593-594.]). For the synthesis, see: Liu et al. (2005[Liu, L., Liu, Z. X., Xu, W., Xu, H., Zhang, D. Q. & Zhu, D. B. (2005). Tetrahedron, 61, 3813-3817.]).

[Scheme 1]

Experimental

Crystal data
  • C40H46S2

  • Mr = 590.89

  • Triclinic, [P \overline 1]

  • a = 9.2040 (18) Å

  • b = 9.3640 (19) Å

  • c = 10.582 (2) Å

  • α = 85.69 (3)°

  • β = 85.18 (3)°

  • γ = 69.41 (3)°

  • V = 849.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 (2) K

  • 0.62 × 0.40 × 0.07 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.805, Tmax = 0.992

  • 3595 measured reflections

  • 3595 independent reflections

  • 2287 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.241

  • S = 1.07

  • 3595 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and characterization of nanometer-sized conjugated molecules of precise length and constitution are of widespread interest, which is due to their electroconductive, magnetic, and optical properties (Tour, 1996; Huang & Tour, 1998; Grosshenny et al., 1997; Brad Wan et al., 2000). Generally, crystal structure of a molecule is important for better understanding of its properties. Therefore, structures of oligothiophene single crystals have been reported. The field of molecular organic semiconductors is being revolutionized by the availability of ultrahigh purity single crystals that have allowed the demonstration of phenomena long thought to be restricted to inorganic semiconductors (Cornil et al., 2001).

The molecule of the title compound (Fig. 1) is centrosymmetric. An asymmetric unit comprises a half on the molecule. The inversion centre is located in the middle of C3—C3i bond. Conjugated molecular skeleton is nearly planar; mean deviation from the best least-square plane is 0.041 Å. The endocyclic bond angles on the long molecular axis are less than the normal 120° value (they vary from 116.42–117.52°) whereas that situated out of this long molecular axis are greater than 120° (in the range 120.73–122.43°). This result agrees with those obtained for polyphenyls (Robertson, 1961; Baudour, 1972; Domenicano et al., 1975; Charbonneau & Delugeard, 1977). The two thiophene rings, phenyl rings and CC are coplanar. The crystal packing is dominated by van der Waals interactions.

Related literature top

For related literature, see: Baudour (1972); Brad Wan et al. (2000); Charbonneau & Delugeard (1977); Cornil et al. (2001); Domenicano et al. (1975); Grosshenny et al. (1997); Huang & Tour (1998); Liu et al. (2005); Robertson (1961); Tour (1996). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···; etc. Please revise this section as indicated.

Experimental top

The synthesis of 4,4'-bis-[2-(3,4-dibutyl-2-thienylethynyl)]biphenyl was performed as previously described (Liu et al., 2005).

Yellow needles were grown from an ethanol/hexane solution by slow evaporation.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability. To generate the molecule symmetry code -x, -y, -z + 2 is applied.
[Figure 2] Fig. 2. View of the packing mode along a axis of (I).
4,4'-Bis[2-(3,4-dibutyl-2-thienylethynyl)]biphenyl top
Crystal data top
C40H46S2V = 849.7 (3) Å3
Mr = 590.89Z = 1
Triclinic, P1F(000) = 318
a = 9.2040 (18) ÅDx = 1.155 Mg m3
b = 9.3640 (19) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.582 (2) ŵ = 0.18 mm1
α = 85.69 (3)°T = 293 K
β = 85.18 (3)°Neddle, yellow
γ = 69.41 (3)°0.62 × 0.40 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 0.76 pixels mm-1θmax = 27.5°, θmin = 2.3°
Oscillation scansh = 011
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 1012
Tmin = 0.805, Tmax = 0.992l = 1313
3595 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1672P)2 + 0.1626P]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C40H46S2γ = 69.41 (3)°
Mr = 590.89V = 849.7 (3) Å3
Triclinic, P1Z = 1
a = 9.2040 (18) ÅMo Kα radiation
b = 9.3640 (19) ŵ = 0.18 mm1
c = 10.582 (2) ÅT = 293 K
α = 85.69 (3)°0.62 × 0.40 × 0.07 mm
β = 85.18 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3595 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
2287 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.992Rint = 0.000
3595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.241H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
3595 reflectionsΔρmin = 0.42 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34733 (8)0.37884 (8)0.02833 (7)0.0512 (3)
C10.2000 (4)0.5223 (4)0.3588 (3)0.0657 (9)
H1A0.13340.57780.35580.079*
C20.3290 (4)0.5588 (4)0.4443 (3)0.0615 (8)
H2A0.34670.63880.49730.074*
C30.4314 (3)0.4808 (3)0.4534 (2)0.0393 (5)
C40.4016 (4)0.3655 (4)0.3702 (4)0.0750 (12)
H4A0.46960.31160.37210.090*
C50.2733 (4)0.3276 (5)0.2840 (4)0.0816 (13)
H5A0.25730.24940.22950.098*
C60.1694 (3)0.4041 (3)0.2779 (2)0.0439 (6)
C70.0335 (3)0.3631 (3)0.1922 (3)0.0476 (6)
C80.0798 (3)0.3289 (3)0.1211 (2)0.0440 (6)
C90.2138 (3)0.2853 (3)0.0369 (2)0.0415 (6)
C100.2565 (3)0.1695 (3)0.0473 (2)0.0387 (5)
C110.3994 (3)0.1568 (3)0.1180 (2)0.0419 (6)
C120.4587 (3)0.2635 (3)0.0862 (3)0.0497 (7)
H120.55070.27200.12350.060*
C130.1620 (3)0.0701 (3)0.0634 (3)0.0463 (6)
H13A0.09480.07190.01260.056*
H13B0.23170.03440.07280.056*
C140.4717 (3)0.0371 (3)0.2152 (3)0.0515 (7)
H14A0.49100.06300.17310.062*
H14B0.39690.04980.27840.062*
C150.0618 (3)0.1215 (3)0.1791 (3)0.0503 (6)
H15A0.12670.13520.25270.060*
H15B0.02330.04120.19600.060*
C160.6214 (3)0.0406 (3)0.2825 (3)0.0498 (7)
H16A0.69650.02930.22010.060*
H16B0.60250.13900.32740.060*
C170.0748 (3)0.2680 (4)0.1618 (3)0.0575 (7)
H17A0.03760.34450.13360.069*
H17B0.14650.25010.09530.069*
C180.6894 (3)0.0855 (4)0.3767 (3)0.0604 (8)
H18A0.70950.18380.33140.073*
H18B0.61310.07520.43800.073*
C190.1626 (4)0.3311 (4)0.2807 (3)0.0680 (9)
H19A0.24770.42330.26230.102*
H19B0.20190.25710.30850.102*
H19C0.09360.35260.34640.102*
C200.8373 (5)0.0823 (6)0.4465 (4)0.0866 (13)
H20A0.87470.16410.50370.130*
H20B0.91400.09440.38660.130*
H20C0.81770.01350.49370.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0432 (4)0.0556 (4)0.0568 (5)0.0203 (3)0.0164 (3)0.0206 (3)
C10.0576 (17)0.080 (2)0.070 (2)0.0398 (16)0.0352 (15)0.0323 (17)
C20.0596 (17)0.0696 (18)0.0622 (18)0.0334 (15)0.0336 (14)0.0329 (15)
C30.0314 (11)0.0457 (12)0.0341 (11)0.0071 (9)0.0110 (9)0.0058 (9)
C40.0615 (18)0.088 (2)0.090 (2)0.0447 (18)0.0481 (18)0.055 (2)
C50.068 (2)0.090 (2)0.097 (3)0.0424 (19)0.054 (2)0.062 (2)
C60.0326 (11)0.0505 (14)0.0415 (13)0.0084 (10)0.0130 (10)0.0066 (10)
C70.0395 (13)0.0532 (14)0.0433 (14)0.0099 (11)0.0122 (11)0.0087 (11)
C80.0372 (12)0.0506 (14)0.0393 (13)0.0113 (11)0.0109 (10)0.0059 (10)
C90.0326 (11)0.0477 (13)0.0404 (12)0.0116 (10)0.0126 (10)0.0065 (10)
C100.0321 (11)0.0443 (12)0.0366 (12)0.0116 (9)0.0080 (9)0.0025 (9)
C110.0315 (11)0.0488 (13)0.0406 (13)0.0098 (10)0.0118 (9)0.0082 (10)
C120.0360 (12)0.0596 (15)0.0526 (15)0.0182 (11)0.0201 (11)0.0148 (12)
C130.0430 (13)0.0452 (13)0.0514 (14)0.0190 (11)0.0110 (11)0.0048 (11)
C140.0385 (13)0.0582 (16)0.0552 (16)0.0142 (12)0.0173 (11)0.0212 (13)
C150.0452 (13)0.0580 (15)0.0509 (15)0.0225 (12)0.0100 (11)0.0140 (12)
C160.0374 (13)0.0617 (16)0.0442 (14)0.0113 (12)0.0149 (11)0.0129 (12)
C170.0475 (15)0.0641 (18)0.0589 (17)0.0165 (13)0.0028 (13)0.0116 (14)
C180.0478 (15)0.077 (2)0.0428 (15)0.0039 (14)0.0070 (12)0.0187 (14)
C190.0546 (18)0.080 (2)0.068 (2)0.0214 (17)0.0071 (15)0.0038 (17)
C200.063 (2)0.111 (3)0.061 (2)0.003 (2)0.0313 (17)0.018 (2)
Geometric parameters (Å, º) top
S1—C121.702 (3)C13—H13A0.9700
S1—C91.735 (3)C13—H13B0.9700
C1—C61.385 (4)C14—C161.507 (3)
C1—C21.387 (4)C14—H14A0.9700
C1—H1A0.9300C14—H14B0.9700
C2—C31.375 (4)C15—C171.511 (4)
C2—H2A0.9300C15—H15A0.9700
C3—C41.382 (4)C15—H15B0.9700
C3—C3i1.490 (4)C16—C181.527 (4)
C4—C51.387 (4)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.377 (4)C17—C191.519 (5)
C5—H5A0.9300C17—H17A0.9700
C6—C71.435 (3)C17—H17B0.9700
C7—C81.193 (3)C18—C201.502 (5)
C8—C91.414 (3)C18—H18A0.9700
C9—C101.382 (3)C18—H18B0.9700
C10—C111.428 (3)C19—H19A0.9600
C10—C131.507 (4)C19—H19B0.9600
C11—C121.369 (4)C19—H19C0.9600
C11—C141.514 (3)C20—H20A0.9600
C12—H120.9300C20—H20B0.9600
C13—C151.539 (4)C20—H20C0.9600
C12—S1—C991.29 (12)C11—C14—H14A108.5
C6—C1—C2120.7 (3)C16—C14—H14B108.5
C6—C1—H1A119.7C11—C14—H14B108.5
C2—C1—H1A119.7H14A—C14—H14B107.5
C3—C2—C1122.4 (3)C17—C15—C13113.7 (2)
C3—C2—H2A118.8C17—C15—H15A108.8
C1—C2—H2A118.8C13—C15—H15A108.8
C2—C3—C4116.4 (2)C17—C15—H15B108.8
C2—C3—C3i122.1 (3)C13—C15—H15B108.8
C4—C3—C3i121.5 (3)H15A—C15—H15B107.7
C3—C4—C5122.0 (3)C14—C16—C18112.4 (2)
C3—C4—H4A119.0C14—C16—H16A109.1
C5—C4—H4A119.0C18—C16—H16A109.1
C6—C5—C4121.1 (3)C14—C16—H16B109.1
C6—C5—H5A119.5C18—C16—H16B109.1
C4—C5—H5A119.5H16A—C16—H16B107.9
C5—C6—C1117.5 (2)C15—C17—C19114.3 (3)
C5—C6—C7121.7 (2)C15—C17—H17A108.7
C1—C6—C7120.8 (2)C19—C17—H17A108.7
C8—C7—C6179.8 (4)C15—C17—H17B108.7
C7—C8—C9178.8 (3)C19—C17—H17B108.7
C10—C9—C8126.9 (2)H17A—C17—H17B107.6
C10—C9—S1111.52 (17)C20—C18—C16113.2 (3)
C8—C9—S1121.6 (2)C20—C18—H18A108.9
C9—C10—C11112.0 (2)C16—C18—H18A108.9
C9—C10—C13123.8 (2)C20—C18—H18B108.9
C11—C10—C13124.2 (2)C16—C18—H18B108.9
C12—C11—C10111.9 (2)H18A—C18—H18B107.7
C12—C11—C14126.0 (2)C17—C19—H19A109.5
C10—C11—C14122.0 (2)C17—C19—H19B109.5
C11—C12—S1113.24 (18)H19A—C19—H19B109.5
C11—C12—H12123.4C17—C19—H19C109.5
S1—C12—H12123.4H19A—C19—H19C109.5
C10—C13—C15112.8 (2)H19B—C19—H19C109.5
C10—C13—H13A109.0C18—C20—H20A109.5
C15—C13—H13A109.0C18—C20—H20B109.5
C10—C13—H13B109.0H20A—C20—H20B109.5
C15—C13—H13B109.0C18—C20—H20C109.5
H13A—C13—H13B107.8H20A—C20—H20C109.5
C16—C14—C11115.3 (2)H20B—C20—H20C109.5
C16—C14—H14A108.5
C12—C11—C10—C90.6 (4)C4—C5—C6—C11.5 (1)
C12—S1—C9—C100.1 (8)C1—C2—C3—C41.6 (1)
C10—C11—C12—S10.5 (1)C5—C4—C3—C21.5 (1)
C11—C12—S1—C90.2 (1)C5—C6—C1—C21.4 (2)
C11—C10—C9—S10.4 (9)C9—C8—C7—C693.5 (2)
C11—C10—C9—C8179.9 (8)C10—C9—C8—C724.6 (9)
C12—S1—C9—C8179.7 (4)S1—C9—C8—C7155.8 (2)
C7—C6—C5—C4177.9 (5)C5—C6—C7—C8117.5 (4)
C7—C6—C1—C2178.0 (5)C1—C6—C7—C861.9 (1)
C6—C5—C4—C30.0 (4)C4—C3—C3—C490.0 (1)
C6—C1—C2—C30.1 (5)
Symmetry code: (i) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC40H46S2
Mr590.89
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2040 (18), 9.3640 (19), 10.582 (2)
α, β, γ (°)85.69 (3), 85.18 (3), 69.41 (3)
V3)849.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.62 × 0.40 × 0.07
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.805, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3595, 3595, 2287
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.241, 1.07
No. of reflections3595
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.42

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The present research work was financially supported by the National Natural Science Foundation of China (grant No. 20572113), Hebei Natural Science Foundation, and the Hebei University of Science and Technology Project for Young Scientists Fund.

References

First citationBaudour, J. L. (1972). Acta Cryst. B28, 1649–1656.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrad Wan, W., Brand, S. C., Park, J. J. & Haley, M. (2000). Chem. Eur. J. 6, 2044–2052.  PubMed Google Scholar
First citationCharbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586–1588.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCornil, J., Calbert, J. P. & Bredas, J. L. (2001). J. Am. Chem. Soc. 123, 1250–1251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDomenicano, A., Vaciago, A. & Coulson, C. A. (1975). Acta Cryst. B31, 221–234.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGrosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem. 62, 1491–1500.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, S. & Tour, J. M. (1998). Polym. Prepr. 39, 525–526.  CAS Google Scholar
First citationLiu, L., Liu, Z. X., Xu, W., Xu, H., Zhang, D. Q. & Zhu, D. B. (2005). Tetrahedron, 61, 3813–3817.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobertson, G. B. (1961). Nature (London), 191, 593–594.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTour, J. M. (1996). Chem. Rev. 96, 537–553.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds