metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,3-bis­­(benzimidazol-2-yl)-2-oxa­propane]copper(II)–picrate–di­methyl­formamide (1/2/4)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: wuhuilu@163.com

(Received 18 October 2008; accepted 8 November 2008; online 13 November 2008)

In the title compound, [Cu(C16H14N4O)2](C6H2N3O7)2·4C3H7NO, the CuII ion is located on a crystallographic inversion center and is coordinated in a distorted octa­hedral environment by four N atoms and two O atoms forming two long Cu—O bonds. One of the unique dimethyl­formamide solvent mol­ecules is disordered over two sites with occupancies of 0.715 (6) and 0.285 (6). The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the analagous Zn(II) diperchlorate complex, see: Zhou & Yang (2006[Zhou, H.-Q. & Yang, P. (2006). Huaxue Xuebao, 64, 793.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H14N4O)2](C6H2N3O7)2·4C3H7NO

  • Mr = 1368.77

  • Triclinic, [P \overline 1]

  • a = 10.9656 (7) Å

  • b = 12.6028 (12) Å

  • c = 13.4100 (9) Å

  • α = 65.746 (2)°

  • β = 88.629 (2)°

  • γ = 65.187 (2)°

  • V = 1508.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 (2) K

  • 0.28 × 0.21 × 0.11 mm

Data collection
  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.883, Tmax = 0.952

  • 12429 measured reflections

  • 5605 independent reflections

  • 3363 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.232

  • S = 1.01

  • 5605 reflections

  • 457 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—N3 1.979 (3)
Cu—N1 1.992 (4)
Cu—O1 2.583 (3)
N3—Cu—N3i 180
N3—Cu—N1 87.55 (15)
N3—Cu—N1i 92.45 (15)
N1—Cu—N1i 180
N3—Cu—O1i 106.54 (12)
N1—Cu—O1i 106.14 (13)
N3—Cu—O1 73.46 (12)
N1—Cu—O1 73.86 (13)
O1i—Cu—O1 180
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O6ii 0.87 (5) 1.95 (4) 2.709 (5) 145 (6)
N2—H2N⋯O5ii 0.87 (5) 2.41 (5) 3.104 (6) 138 (6)
N4—H4N⋯O9iii 0.87 (5) 1.92 (2) 2.753 (6) 162 (5)
Symmetry codes: (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The asymmetric unit of the title compound consists of half of a di[1,3-bis(benzimidazol-2-yl)-2-oxopropane] copper(II) cation (Fig.1), one picrate anion and two molecules of DMF. The CuII ion is six-coordinated with a N4O2 ligand set. The obb (1,3-bis(benzimidazol-2-yl)-2-oxopropane) ligand acts as a tridentate donor. The coordination geometry of the CuII may be best described as distorted octahedral. This geometry is assumed by the CuII to relieve the steric crowding. The equatorial plane is occupied by four N atoms of two benzimidazolyl groups. The axial positions are occuppied two O atoms. The crystal structure is stabilized by intermolecular N-H···O hydrogen bonds.

Related literature top

For the analagous Zn(II) diperchlorate complex, see: Zhou & Yang (2006).

Experimental top

To a stirred solution of 1,3-bis(benzimidazol-2-yl)-2-oxopropane (0.139 g, 0.5 mmol) in hot MeOH (15 ml) was added Cu(C6H2N3O7)2 (0.130 g, 0.25 mmol) in MeOH (5 ml). A green crystalline product formed rapidly. The precipitate was filtered off, washed with MeOH and absolute Et2O, and dried in vacuo. The dried precipitate was dissolved in DMF resulting in a green solution. The green crystals suitable for X-ray diffraction studies were obtained by ether diffusion into DMF after three days at room temperature. Yield, 0.106 g (66%). (found: C, 49.23; H, 4.37; N,18.58. Calcd. for C56H60N18O20Cu: C, 49.14; H, 4.42; N, 18.42)

Refinement top

All H atoms were found in difference electron maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.93 to 0.96 Å and Uiso(H) = 1.2 Ueq(C). The H atoms bonded to N atoms were refined independently with the distance constraint of N-H = 0.86 (1)Å. One of the unique DMF solvent molecules is disorderd over two sites with refined occupancies 0.715 (6) and 0.285 (6). The minor component was refined isotropically and constrained to be geometrically similar to the major component using the SAME instruction in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation of the title compound showing displacement ellipsoids at the 30% probability level [symmetry code: (a) -x, -y+1, -x+1].
Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]copper(II)–picrate–dimethylformamide (1/2/4) top
Crystal data top
[Cu(C16H14N4O)2](C6H2N3O7)2·4C3H7NOZ = 1
Mr = 1368.77F(000) = 711
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9656 (7) ÅCell parameters from 5605 reflections
b = 12.6028 (12) Åθ = 3.0–25.5°
c = 13.4100 (9) ŵ = 0.46 mm1
α = 65.746 (2)°T = 293 K
β = 88.629 (2)°Block, green
γ = 65.187 (2)°0.28 × 0.21 × 0.11 mm
V = 1508.8 (2) Å3
Data collection top
Rigaku R-AXIS Spider
diffractometer
5605 independent reflections
Radiation source: fine-focus sealed tube3363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.883, Tmax = 0.952k = 1515
12429 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.232 w = 1/[σ2(Fo2) + (0.1327P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5605 reflectionsΔρmax = 0.78 e Å3
457 parametersΔρmin = 1.09 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
[Cu(C16H14N4O)2](C6H2N3O7)2·4C3H7NOγ = 65.187 (2)°
Mr = 1368.77V = 1508.8 (2) Å3
Triclinic, P1Z = 1
a = 10.9656 (7) ÅMo Kα radiation
b = 12.6028 (12) ŵ = 0.46 mm1
c = 13.4100 (9) ÅT = 293 K
α = 65.746 (2)°0.28 × 0.21 × 0.11 mm
β = 88.629 (2)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
5605 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3363 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.952Rint = 0.078
12429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07518 restraints
wR(F2) = 0.232H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.78 e Å3
5605 reflectionsΔρmin = 1.09 e Å3
457 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.00000.50000.50000.0414 (3)
O10.1409 (3)0.5704 (3)0.5882 (2)0.0445 (8)
O20.1106 (4)0.1849 (4)0.7815 (3)0.0747 (12)
O30.0335 (4)0.0186 (5)0.8206 (3)0.0701 (11)
O40.4289 (4)0.3097 (4)1.0041 (3)0.0651 (11)
O50.4919 (4)0.2964 (4)1.1479 (3)0.0816 (14)
O60.4312 (3)0.0496 (4)1.1048 (3)0.0577 (10)
O70.3068 (6)0.1965 (6)1.0630 (6)0.151 (3)
O80.1451 (5)0.3258 (4)0.9307 (4)0.0838 (13)
N10.1462 (3)0.3364 (4)0.6167 (3)0.0418 (9)
N20.3339 (4)0.2162 (4)0.7450 (3)0.0440 (10)
N30.1426 (3)0.5132 (4)0.4093 (3)0.0434 (10)
N40.3198 (4)0.5527 (5)0.3577 (3)0.0493 (10)
N50.0233 (4)0.0710 (6)0.8286 (3)0.0577 (12)
N60.4176 (4)0.2487 (5)1.0584 (3)0.0574 (12)
N70.2262 (4)0.2166 (5)0.9921 (3)0.0593 (12)
C10.1934 (4)0.2071 (5)0.6375 (4)0.0431 (11)
C20.1446 (5)0.1495 (5)0.5898 (4)0.0488 (12)
H20.06740.19940.53430.059*
C30.2141 (5)0.0169 (6)0.6273 (4)0.0561 (13)
H30.18230.02390.59800.067*
C40.3320 (5)0.0576 (6)0.7088 (4)0.0586 (14)
H40.37730.14710.73190.070*
C50.3832 (5)0.0029 (5)0.7558 (4)0.0490 (12)
H50.46190.05280.80980.059*
C60.3118 (4)0.1294 (5)0.7189 (3)0.0436 (11)
C70.2347 (4)0.3364 (5)0.6822 (4)0.0433 (12)
C80.2230 (4)0.4562 (5)0.6871 (4)0.0468 (12)
H8A0.18280.46270.75080.056*
H8B0.31340.45030.69650.056*
C90.2173 (4)0.6123 (5)0.5063 (4)0.0481 (12)
H9A0.30830.58410.54240.058*
H9B0.17330.70670.46740.058*
C100.2273 (4)0.5579 (5)0.4249 (4)0.0464 (12)
C110.2956 (4)0.5003 (5)0.2916 (4)0.0498 (13)
C120.3633 (5)0.4699 (6)0.2106 (4)0.0596 (15)
H120.43510.48950.18740.072*
C130.3170 (5)0.4088 (7)0.1670 (5)0.0686 (17)
H130.35980.38540.11340.082*
C140.2084 (5)0.3810 (6)0.2004 (4)0.0662 (16)
H140.18080.33960.16870.079*
C150.1411 (5)0.4134 (6)0.2791 (4)0.0564 (14)
H150.06860.39470.30140.068*
C160.1863 (4)0.4754 (5)0.3240 (4)0.0444 (11)
C170.0969 (4)0.0407 (5)0.8985 (4)0.0480 (12)
C180.2005 (5)0.0854 (5)0.9460 (4)0.0496 (13)
H180.19430.14930.93150.060*
C190.3118 (4)0.1151 (5)1.0143 (4)0.0496 (13)
C200.3311 (4)0.0229 (5)1.0410 (3)0.0456 (12)
C210.2194 (5)0.1088 (5)0.9812 (4)0.0472 (12)
C220.1076 (4)0.1381 (5)0.9134 (4)0.0488 (13)
H220.03920.22340.87760.059*
O90.5277 (3)0.3378 (4)0.6011 (3)0.0581 (10)
N80.5913 (4)0.1433 (4)0.6002 (3)0.0551 (12)
C230.6860 (5)0.0045 (5)0.6489 (4)0.0723 (18)
H23A0.73870.01470.59500.087*
H23B0.63550.04540.67100.087*
H23C0.74610.01760.71280.087*
C240.4876 (5)0.1923 (6)0.5051 (4)0.0651 (16)
H24A0.41920.27790.49080.078*
H24B0.44590.13500.52110.078*
H24C0.52950.19610.44080.078*
C250.6028 (5)0.2181 (5)0.6400 (4)0.0551 (14)
H250.67100.17990.70100.066*
O100.1119 (11)0.8119 (10)0.6125 (7)0.161 (4)0.715 (6)
N90.1418 (5)0.6993 (7)0.7922 (6)0.068 (2)0.715 (6)
C260.2883 (6)0.6379 (9)0.7915 (9)0.095 (4)0.715 (6)
H26A0.30440.67370.71700.143*0.715 (6)
H26B0.32050.54570.81870.143*0.715 (6)
H26C0.33600.65410.83840.143*0.715 (6)
C270.0966 (8)0.6585 (9)0.8996 (6)0.081 (3)0.715 (6)
H27A0.00090.70620.88880.122*0.715 (6)
H27B0.13860.67580.94930.122*0.715 (6)
H27C0.12250.56700.93090.122*0.715 (6)
C280.0578 (8)0.7873 (8)0.6984 (6)0.071 (3)0.715 (6)
H28A0.03590.82920.69500.085*0.715 (6)
O10A0.3069 (17)0.6919 (19)0.6726 (13)0.100*0.285 (6)
N9A0.1822 (19)0.667 (3)0.8055 (15)0.100*0.285 (6)
C26A0.303 (2)0.552 (2)0.8825 (17)0.100*0.285 (6)
H26D0.37770.53310.84300.150*0.285 (6)
H26E0.28380.47840.91430.150*0.285 (6)
H26F0.32810.56880.94060.150*0.285 (6)
C27A0.0588 (19)0.700 (3)0.8533 (19)0.100*0.285 (6)
H27D0.01510.77550.79730.150*0.285 (6)
H27E0.07390.71820.91350.150*0.285 (6)
H27F0.03640.62820.88060.150*0.285 (6)
C28A0.1935 (19)0.729 (2)0.7029 (14)0.100*0.285 (6)
H28B0.11750.80160.65250.120*0.285 (6)
H2N0.400 (4)0.199 (6)0.792 (4)0.08 (2)*
H4N0.374 (5)0.587 (5)0.357 (4)0.069 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0295 (4)0.0509 (6)0.0466 (5)0.0148 (4)0.0089 (3)0.0273 (4)
O10.0332 (15)0.051 (2)0.0461 (17)0.0136 (15)0.0083 (14)0.0237 (16)
O20.045 (2)0.073 (3)0.077 (3)0.011 (2)0.0100 (19)0.021 (2)
O30.058 (2)0.081 (3)0.070 (2)0.029 (2)0.0037 (19)0.033 (2)
O40.063 (2)0.059 (3)0.068 (2)0.0146 (19)0.0012 (18)0.037 (2)
O50.081 (3)0.064 (3)0.064 (2)0.002 (2)0.032 (2)0.026 (2)
O60.0501 (19)0.060 (2)0.0532 (19)0.0160 (17)0.0023 (16)0.0245 (18)
O70.136 (5)0.082 (4)0.197 (6)0.010 (3)0.097 (5)0.082 (4)
O80.084 (3)0.059 (3)0.088 (3)0.019 (2)0.011 (2)0.026 (2)
N10.0338 (18)0.051 (3)0.047 (2)0.0186 (18)0.0123 (17)0.027 (2)
N20.0352 (19)0.054 (3)0.044 (2)0.0163 (19)0.0124 (18)0.027 (2)
N30.0315 (17)0.054 (3)0.045 (2)0.0156 (18)0.0086 (16)0.027 (2)
N40.0325 (19)0.058 (3)0.059 (2)0.019 (2)0.0144 (19)0.028 (2)
N50.041 (2)0.080 (4)0.047 (2)0.023 (2)0.0048 (19)0.027 (3)
N60.052 (2)0.059 (3)0.057 (2)0.015 (2)0.007 (2)0.032 (2)
N70.051 (2)0.063 (3)0.048 (2)0.007 (2)0.002 (2)0.030 (2)
C10.037 (2)0.055 (3)0.045 (2)0.021 (2)0.015 (2)0.029 (2)
C20.043 (2)0.058 (3)0.048 (3)0.022 (2)0.012 (2)0.026 (3)
C30.061 (3)0.063 (4)0.053 (3)0.030 (3)0.018 (3)0.033 (3)
C40.067 (3)0.054 (4)0.059 (3)0.026 (3)0.025 (3)0.030 (3)
C50.045 (2)0.058 (3)0.042 (2)0.015 (2)0.009 (2)0.028 (2)
C60.037 (2)0.048 (3)0.041 (2)0.013 (2)0.013 (2)0.022 (2)
C70.0260 (19)0.061 (3)0.042 (2)0.012 (2)0.0078 (18)0.030 (2)
C80.039 (2)0.058 (3)0.044 (2)0.017 (2)0.002 (2)0.027 (2)
C90.035 (2)0.059 (3)0.053 (3)0.021 (2)0.010 (2)0.028 (3)
C100.031 (2)0.058 (3)0.053 (3)0.017 (2)0.009 (2)0.030 (2)
C110.036 (2)0.057 (3)0.049 (3)0.011 (2)0.009 (2)0.027 (3)
C120.043 (3)0.073 (4)0.062 (3)0.021 (3)0.021 (2)0.036 (3)
C130.048 (3)0.096 (5)0.075 (3)0.024 (3)0.027 (3)0.059 (4)
C140.057 (3)0.085 (5)0.070 (3)0.026 (3)0.021 (3)0.052 (3)
C150.041 (2)0.070 (4)0.062 (3)0.021 (3)0.014 (2)0.038 (3)
C160.031 (2)0.053 (3)0.047 (2)0.012 (2)0.0093 (19)0.027 (2)
C170.038 (2)0.059 (3)0.043 (2)0.018 (2)0.008 (2)0.023 (2)
C180.046 (3)0.064 (4)0.041 (2)0.027 (3)0.014 (2)0.023 (2)
C190.040 (2)0.057 (3)0.043 (2)0.010 (2)0.005 (2)0.026 (2)
C200.041 (2)0.052 (3)0.033 (2)0.013 (2)0.008 (2)0.017 (2)
C210.047 (3)0.052 (3)0.043 (2)0.017 (2)0.016 (2)0.027 (2)
C220.036 (2)0.058 (3)0.041 (2)0.010 (2)0.007 (2)0.022 (2)
O90.0464 (18)0.070 (3)0.062 (2)0.0275 (19)0.0155 (17)0.032 (2)
N80.038 (2)0.067 (3)0.052 (2)0.014 (2)0.0108 (18)0.028 (2)
C230.055 (3)0.072 (4)0.070 (3)0.009 (3)0.013 (3)0.034 (3)
C240.056 (3)0.077 (4)0.053 (3)0.018 (3)0.003 (3)0.032 (3)
C250.038 (2)0.079 (4)0.055 (3)0.027 (3)0.015 (2)0.035 (3)
O100.230 (12)0.138 (9)0.169 (9)0.105 (9)0.009 (9)0.091 (8)
N90.016 (3)0.079 (5)0.137 (7)0.012 (3)0.021 (3)0.082 (5)
C260.025 (3)0.086 (7)0.202 (13)0.011 (4)0.008 (5)0.102 (9)
C270.082 (6)0.054 (6)0.077 (6)0.025 (5)0.019 (5)0.006 (5)
C280.087 (6)0.078 (7)0.079 (6)0.055 (6)0.027 (5)0.046 (6)
Geometric parameters (Å, º) top
Cu—N31.979 (3)C13—C141.392 (8)
Cu—N3i1.979 (3)C13—H130.9300
Cu—N11.992 (4)C14—C151.375 (6)
Cu—N1i1.992 (4)C14—H140.9300
Cu—O1i2.583 (3)C15—C161.395 (7)
Cu—O12.583 (3)C15—H150.9300
O1—C91.427 (5)C17—C221.373 (7)
O1—C81.429 (5)C17—C181.382 (7)
O2—N51.227 (6)C18—C191.363 (6)
O3—N51.227 (6)C18—H180.9300
O4—N61.230 (5)C19—C201.440 (7)
O5—N61.228 (5)C20—C211.465 (7)
O6—C201.244 (5)C21—C221.366 (6)
O7—N71.185 (5)C22—H220.9300
O8—N71.199 (6)O9—C251.248 (6)
N1—C71.324 (5)N8—C251.306 (6)
N1—C11.387 (6)N8—C231.461 (6)
N2—C71.342 (6)N8—C241.461 (5)
N2—C61.386 (6)C23—H23A0.9600
N2—H2N0.87 (5)C23—H23B0.9600
N3—C101.329 (6)C23—H23C0.9600
N3—C161.413 (5)C24—H24A0.9600
N4—C101.339 (6)C24—H24B0.9600
N4—C111.389 (6)C24—H24C0.9600
N4—H4N0.87 (5)C25—H250.9300
N5—C171.451 (6)O10—C281.266 (7)
N6—C191.451 (6)N9—C281.309 (7)
N7—C211.456 (7)N9—C261.463 (6)
C1—C21.395 (6)N9—C271.468 (6)
C1—C61.399 (6)C26—H26A0.9600
C2—C31.373 (8)C26—H26B0.9600
C2—H20.9300C26—H26C0.9600
C3—C41.397 (7)C27—H27A0.9600
C3—H30.9300C27—H27B0.9600
C4—C51.374 (7)C27—H27C0.9600
C4—H40.9300C28—H28A0.9300
C5—C61.372 (7)O10A—C28A1.255 (8)
C5—H50.9300N9A—C28A1.309 (7)
C7—C81.490 (7)N9A—C27A1.456 (7)
C8—H8A0.9700N9A—C26A1.466 (7)
C8—H8B0.9700C26A—H26D0.9600
C9—C101.489 (6)C26A—H26E0.9600
C9—H9A0.9700C26A—H26F0.9600
C9—H9B0.9700C27A—H27D0.9600
C11—C161.380 (7)C27A—H27E0.9600
C11—C121.394 (6)C27A—H27F0.9600
C12—C131.381 (8)C28A—H28B0.9300
C12—H120.9300
N3—Cu—N3i180C14—C13—H13118.8
N3—Cu—N187.55 (15)C15—C14—C13121.4 (5)
N3i—Cu—N192.45 (15)C15—C14—H14119.3
N3—Cu—N1i92.45 (15)C13—C14—H14119.3
N3i—Cu—N1i87.55 (15)C14—C15—C16117.1 (5)
N1—Cu—N1i180C14—C15—H15121.5
N3—Cu—O1i106.54 (12)C16—C15—H15121.5
N3i—Cu—O1i73.46 (12)C11—C16—C15120.9 (4)
N1—Cu—O1i106.14 (13)C11—C16—N3109.3 (4)
N1i—Cu—O1i73.86 (13)C15—C16—N3129.7 (4)
N3—Cu—O173.46 (12)C22—C17—C18121.3 (4)
N3i—Cu—O1106.54 (12)C22—C17—N5119.6 (5)
N1—Cu—O173.86 (13)C18—C17—N5119.1 (5)
N1i—Cu—O1106.14 (13)C19—C18—C17119.2 (5)
O1i—Cu—O1180C19—C18—H18120.4
C9—O1—C8114.0 (3)C17—C18—H18120.4
C9—O1—Cu105.0 (2)C18—C19—C20124.5 (5)
C8—O1—Cu104.8 (3)C18—C19—N6115.8 (5)
C7—N1—C1105.4 (4)C20—C19—N6119.7 (4)
C7—N1—Cu122.5 (3)O6—C20—C19124.9 (4)
C1—N1—Cu131.4 (3)O6—C20—C21123.4 (5)
C7—N2—C6108.1 (4)C19—C20—C21111.7 (4)
C7—N2—H2N124 (4)C22—C21—N7117.0 (5)
C6—N2—H2N128 (4)C22—C21—C20123.6 (5)
C10—N3—C16104.3 (4)N7—C21—C20119.4 (4)
C10—N3—Cu123.2 (3)C21—C22—C17119.5 (5)
C16—N3—Cu132.4 (3)C21—C22—H22120.3
C10—N4—C11107.3 (4)C17—C22—H22120.3
C10—N4—H4N120 (4)C25—N8—C23120.4 (4)
C11—N4—H4N133 (4)C25—N8—C24122.9 (4)
O2—N5—O3123.3 (4)C23—N8—C24116.7 (4)
O2—N5—C17118.3 (5)N8—C23—H23A109.5
O3—N5—C17118.4 (5)N8—C23—H23B109.5
O5—N6—O4122.7 (4)H23A—C23—H23B109.5
O5—N6—C19119.1 (4)N8—C23—H23C109.5
O4—N6—C19118.2 (4)H23A—C23—H23C109.5
O7—N7—O8120.8 (6)H23B—C23—H23C109.5
O7—N7—C21120.5 (5)N8—C24—H24A109.5
O8—N7—C21118.7 (4)N8—C24—H24B109.5
N1—C1—C2131.0 (4)H24A—C24—H24B109.5
N1—C1—C6109.6 (4)N8—C24—H24C109.5
C2—C1—C6119.4 (5)H24A—C24—H24C109.5
C3—C2—C1118.0 (4)H24B—C24—H24C109.5
C3—C2—H2121.0O9—C25—N8124.0 (4)
C1—C2—H2121.0O9—C25—H25118.0
C2—C3—C4121.0 (5)N8—C25—H25118.0
C2—C3—H3119.5C28—N9—C26119.1 (6)
C4—C3—H3119.5C28—N9—C27123.2 (5)
C5—C4—C3122.1 (5)C26—N9—C27117.7 (6)
C5—C4—H4118.9N9—C26—H26A109.5
C3—C4—H4118.9N9—C26—H26B109.5
C6—C5—C4116.4 (4)H26A—C26—H26B109.5
C6—C5—H5121.8N9—C26—H26C109.5
C4—C5—H5121.8H26A—C26—H26C109.5
C5—C6—N2132.3 (4)H26B—C26—H26C109.5
C5—C6—C1123.1 (5)N9—C27—H27A109.5
N2—C6—C1104.6 (4)N9—C27—H27B109.5
N1—C7—N2112.3 (5)H27A—C27—H27B109.5
N1—C7—C8123.6 (4)N9—C27—H27C109.5
N2—C7—C8124.1 (4)H27A—C27—H27C109.5
O1—C8—C7111.3 (3)H27B—C27—H27C109.5
O1—C8—H8A109.4O10—C28—N9116.0 (7)
C7—C8—H8A109.4O10—C28—H28A122.0
O1—C8—H8B109.4N9—C28—H28A122.0
C7—C8—H8B109.4C28A—N9A—C27A126.2 (9)
H8A—C8—H8B108.0C28A—N9A—C26A118.7 (8)
O1—C9—C10111.0 (4)C27A—N9A—C26A115.1 (8)
O1—C9—H9A109.4N9A—C26A—H26D109.5
C10—C9—H9A109.4N9A—C26A—H26E109.5
O1—C9—H9B109.4H26D—C26A—H26E109.5
C10—C9—H9B109.4N9A—C26A—H26F109.5
H9A—C9—H9B108.0H26D—C26A—H26F109.5
N3—C10—N4113.2 (4)H26E—C26A—H26F109.5
N3—C10—C9123.3 (4)N9A—C27A—H27D109.5
N4—C10—C9123.5 (4)N9A—C27A—H27E109.5
C16—C11—N4106.0 (4)H27D—C27A—H27E109.5
C16—C11—C12122.6 (5)N9A—C27A—H27F109.5
N4—C11—C12131.4 (5)H27D—C27A—H27F109.5
C13—C12—C11115.7 (5)H27E—C27A—H27F109.5
C13—C12—H12122.2O10A—C28A—N9A120.0 (10)
C11—C12—H12122.2O10A—C28A—H28B120.0
C12—C13—C14122.3 (5)N9A—C28A—H28B120.0
C12—C13—H13118.8
N3—Cu—O1—C915.0 (3)C16—N3—C10—N40.2 (6)
N3i—Cu—O1—C9165.0 (3)Cu—N3—C10—N4177.0 (3)
N1—Cu—O1—C9107.2 (3)C16—N3—C10—C9178.4 (4)
N1i—Cu—O1—C972.8 (3)Cu—N3—C10—C94.8 (7)
O1i—Cu—O1—C979 (100)C11—N4—C10—N30.0 (6)
N3—Cu—O1—C8105.5 (3)C11—N4—C10—C9178.1 (5)
N3i—Cu—O1—C874.5 (3)O1—C9—C10—N319.8 (7)
N1—Cu—O1—C813.2 (2)O1—C9—C10—N4162.2 (4)
N1i—Cu—O1—C8166.8 (2)C10—N4—C11—C160.3 (5)
O1i—Cu—O1—C8161 (100)C10—N4—C11—C12177.8 (6)
N3—Cu—N1—C776.3 (3)C16—C11—C12—C132.1 (8)
N3i—Cu—N1—C7103.7 (3)N4—C11—C12—C13175.1 (5)
N1i—Cu—N1—C742 (100)C11—C12—C13—C140.9 (9)
O1i—Cu—N1—C7177.2 (3)C12—C13—C14—C150.1 (10)
O1—Cu—N1—C72.8 (3)C13—C14—C15—C160.0 (9)
N3—Cu—N1—C192.3 (4)N4—C11—C16—C15175.4 (4)
N3i—Cu—N1—C187.7 (4)C12—C11—C16—C152.4 (8)
N1i—Cu—N1—C1149 (100)N4—C11—C16—N30.4 (6)
O1i—Cu—N1—C114.2 (4)C12—C11—C16—N3178.2 (5)
O1—Cu—N1—C1165.8 (4)C14—C15—C16—C111.2 (8)
N3i—Cu—N3—C10153 (100)C14—C15—C16—N3176.1 (5)
N1—Cu—N3—C1079.7 (4)C10—N3—C16—C110.4 (5)
N1i—Cu—N3—C10100.3 (4)Cu—N3—C16—C11176.8 (3)
O1i—Cu—N3—C10174.2 (4)C10—N3—C16—C15175.0 (5)
O1—Cu—N3—C105.8 (4)Cu—N3—C16—C151.4 (8)
N3i—Cu—N3—C1631 (100)O2—N5—C17—C222.5 (7)
N1—Cu—N3—C1696.1 (4)O3—N5—C17—C22176.7 (4)
N1i—Cu—N3—C1683.9 (4)O2—N5—C17—C18175.6 (4)
O1i—Cu—N3—C1610.0 (4)O3—N5—C17—C185.3 (6)
O1—Cu—N3—C16170.0 (4)C22—C17—C18—C193.9 (7)
C7—N1—C1—C2177.3 (4)N5—C17—C18—C19178.1 (4)
Cu—N1—C1—C27.2 (7)C17—C18—C19—C200.5 (7)
C7—N1—C1—C61.0 (5)C17—C18—C19—N6178.4 (4)
Cu—N1—C1—C6171.1 (3)O5—N6—C19—C18152.7 (5)
N1—C1—C2—C3179.6 (4)O4—N6—C19—C1827.1 (7)
C6—C1—C2—C31.5 (6)O5—N6—C19—C2029.3 (7)
C1—C2—C3—C41.5 (7)O4—N6—C19—C20150.9 (4)
C2—C3—C4—C50.6 (7)C18—C19—C20—O6178.7 (4)
C3—C4—C5—C60.3 (7)N6—C19—C20—O63.5 (7)
C4—C5—C6—N2178.4 (4)C18—C19—C20—C212.9 (6)
C4—C5—C6—C10.4 (7)N6—C19—C20—C21174.9 (4)
C7—N2—C6—C5178.2 (5)O7—N7—C21—C22167.0 (6)
C7—N2—C6—C10.2 (4)O8—N7—C21—C2210.0 (7)
N1—C1—C6—C5179.0 (4)O7—N7—C21—C2013.8 (8)
C2—C1—C6—C50.6 (7)O8—N7—C21—C20169.2 (4)
N1—C1—C6—N20.5 (5)O6—C20—C21—C22178.2 (4)
C2—C1—C6—N2178.0 (4)C19—C20—C21—C223.3 (6)
C1—N1—C7—N21.1 (5)O6—C20—C21—N72.6 (6)
Cu—N1—C7—N2172.3 (3)C19—C20—C21—N7175.8 (4)
C1—N1—C7—C8179.9 (4)N7—C21—C22—C17178.8 (4)
Cu—N1—C7—C88.9 (6)C20—C21—C22—C170.3 (7)
C6—N2—C7—N10.8 (5)C18—C17—C22—C213.5 (7)
C6—N2—C7—C8179.6 (4)N5—C17—C22—C21178.5 (4)
C9—O1—C8—C794.6 (4)C23—N8—C25—O9178.3 (5)
Cu—O1—C8—C719.7 (4)C24—N8—C25—O90.3 (7)
N1—C7—C8—O121.8 (6)C26—N9—C28—O100.4 (13)
N2—C7—C8—O1159.6 (4)C27—N9—C28—O10179.7 (9)
C8—O1—C9—C1094.0 (4)C27A—N9A—C28A—O10A178 (3)
Cu—O1—C9—C1020.2 (4)C26A—N9A—C28A—O10A1 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O6ii0.87 (5)1.95 (4)2.709 (5)145 (6)
N2—H2N···O5ii0.87 (5)2.41 (5)3.104 (6)138 (6)
N4—H4N···O9iii0.87 (5)1.92 (2)2.753 (6)162 (5)
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C16H14N4O)2](C6H2N3O7)2·4C3H7NO
Mr1368.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.9656 (7), 12.6028 (12), 13.4100 (9)
α, β, γ (°)65.746 (2), 88.629 (2), 65.187 (2)
V3)1508.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.28 × 0.21 × 0.11
Data collection
DiffractometerRigaku R-AXIS Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.883, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
12429, 5605, 3363
Rint0.078
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.232, 1.02
No. of reflections5605
No. of parameters457
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 1.09

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu—N31.979 (3)Cu—O12.583 (3)
Cu—N11.992 (4)
N3—Cu—N3i180N1—Cu—O1i106.14 (13)
N3—Cu—N187.55 (15)N3—Cu—O173.46 (12)
N3—Cu—N1i92.45 (15)N1—Cu—O173.86 (13)
N1—Cu—N1i180O1i—Cu—O1180
N3—Cu—O1i106.54 (12)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O6ii0.87 (5)1.95 (4)2.709 (5)145 (6)
N2—H2N···O5ii0.87 (5)2.41 (5)3.104 (6)138 (6)
N4—H4N···O9iii0.87 (5)1.92 (2)2.753 (6)162 (5)
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the financial support and grant from Qing Lan Talent Engineering Funds (QL-05–03 A) of Lanzhou Jiaotong University. The Middle-Young Age Science Foundation of Gansu Province (grant No. 3YS061-A25–023,24) is also acknowledged.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, H.-Q. & Yang, P. (2006). Huaxue Xuebao, 64, 793.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds