organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2283-o2284

2-(Benzene­sulfonamido)acetic acid

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 27 October 2008; accepted 31 October 2008; online 8 November 2008)

The title compound, C8H9NO4S, is of inter­est as a precursor to biologically active sulfur-containing heterocyclic cmpounds. The crystal structure displays the classical O—H⋯O inter­molecular hydrogen bonding typical for carboxylic acids forming dimers. Symmetry-related dimers are, in turn, linked through head-to-tail pairs of inter­molecular N—H⋯O inter­actions, giving rise to a zigzag chain along the c axis.

Related literature

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.], 2008[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2008.08.002.]); Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347-o348.]). For related structures, see: Wen et al. (2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]); Zhang et al. (2006[Zhang, S.-S., Xu, L.-L., Zou, J., Bi, S. & Wen, Y.-H. (2006). Acta Cryst. E62, o4478-o4479.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19.]). For background information, see: Berredjem et al. (2000[Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249-264.]); Esteve & Bidal (2002[Esteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019-1021.]); La Roche & Co (1967a,b); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Martinez et al. (2000[Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267-3273.]); Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]). For related literature, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]); Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]); La Roche & Co (1967[La Roche, H. & Co, A. G. (1967). Chem. Abstr. 67, 73323r.]); Vaichulis (1977[Vaichulis, A. J. (1977). US Patent No. 8 273 352.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO4S

  • Mr = 215.23

  • Monoclinic, P 21 /n

  • a = 8.5181 (3) Å

  • b = 11.1302 (4) Å

  • c = 10.6414 (4) Å

  • β = 112.600 (2)°

  • V = 931.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 (2) K

  • 0.36 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.889, Tmax = 0.952

  • 10301 measured reflections

  • 2338 independent reflections

  • 1644 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.03

  • 2338 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.20 3.054 (3) 174
O3—H8⋯O4ii 0.82 1.86 2.678 (2) 178
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamide is an important functionality found in many naturally occurring as well as synthetic compounds which possess numerous types of biological activities e.g., anticonvulsant, antihypertensive, herbicidal and antimalarial (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee & Lee, 2002) activities. In addition, these are found useful as anticancer (La Roche & Co, 1967) and antitubercular (Vaichulis, 1977) agents. These are also assumed as safe antibiotics during Pregnancy (Kayser et al., 2004).

In the present paper, the structure of the title compound has been determined as a part of our ongoing research on the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2007, 2008). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in the related sulfonamide molecules (Gowda et al., 2007a,b,c) and the bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure, each molecule is linked to an inersion related one through head-to-tail pairs of O—H···O intermolecular hydrogen bonds giving rise to dimeric motifs typical for carboxylic acids. Neighbouring dimers are further arranged into zigzag chains along c axis through head-to-tail pairs of N—H···O intermolecular interactions.

Related literature top

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005, 2006, 2007, 2008); Wen et al. (2005). For related structures, see: Wen et al. (2006); Zhang et al. (2006). For bond-length data, see: Allen et al. (1987). For background information, see: Berredjem et al. (2000); Esteve & Bidal (2002); La Roche & Co (1967a,b); Lee & Lee (2002); Martinez et al. (2000); Soledade et al. (2006); Xiao & Timberlake (2000). For related literature, see: Gowda et al. (2007a,b,c); Kayser et al. (2004); La Roche & Co (1967); Vaichulis (1977).

Experimental top

A mixture of N-benzenesulfonyl glycine methyl ester (1.0 g; 4.5 mmoles) and aqueous sodium hydroxide solution (10%; 10.0 ml) was refluxed for a peiod of one hour, cooled and acidified with 1 N hydrochloric acid. A white precipitate obtained was washed with water, dried and recrystallized from methanol to obtain colourless crystals suitable for X-ray studies; m.p. 435-436K.

Refinement top

All H atoms were placed in idealized positions, (C-H = 0.93-97 Å, O-H = 0.82Å, and N-H = 0.86Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq(C and N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure, viewed approximately along the b axis, showing hydrogen bond interactions (dashed lines) along the [0 0 1] direction. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes as given in Table 1.
2-(Benzenesulfonamido)acetic acid top
Crystal data top
C8H9NO4SF(000) = 448
Mr = 215.23Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2708 reflections
a = 8.5181 (3) Åθ = 2.8–26.2°
b = 11.1302 (4) ŵ = 0.34 mm1
c = 10.6414 (4) ÅT = 296 K
β = 112.600 (2)°Cubes, colourless
V = 931.42 (6) Å30.36 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2338 independent reflections
Radiation source: fine-focus sealed tube1644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.889, Tmax = 0.952k = 1413
10301 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3567P]
where P = (Fo2 + 2Fc2)/3
2338 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C8H9NO4SV = 931.42 (6) Å3
Mr = 215.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5181 (3) ŵ = 0.34 mm1
b = 11.1302 (4) ÅT = 296 K
c = 10.6414 (4) Å0.36 × 0.16 × 0.15 mm
β = 112.600 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2338 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1644 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.952Rint = 0.037
10301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
2338 reflectionsΔρmin = 0.47 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16488 (6)0.67470 (5)0.09397 (5)0.04003 (18)
O10.1794 (2)0.77973 (15)0.17404 (17)0.0549 (4)
O20.01764 (18)0.65761 (17)0.02937 (16)0.0570 (5)
O30.2307 (2)0.51175 (18)0.53583 (15)0.0586 (5)
H80.16310.50170.57280.088*
O40.0061 (2)0.52365 (18)0.34770 (15)0.0573 (5)
N10.1740 (3)0.56105 (19)0.18822 (18)0.0518 (5)
H10.12230.49650.14970.062*
C10.3436 (2)0.66945 (18)0.04972 (19)0.0319 (4)
C20.5008 (3)0.7030 (2)0.1452 (2)0.0474 (6)
H20.51190.72900.23130.057*
C30.6406 (3)0.6970 (2)0.1100 (3)0.0575 (7)
H30.74760.71740.17360.069*
C40.6226 (3)0.6612 (2)0.0184 (3)0.0519 (6)
H40.71710.65930.04180.062*
C50.4666 (3)0.6282 (2)0.1123 (2)0.0463 (5)
H50.45580.60390.19880.056*
C60.3255 (2)0.6309 (2)0.07854 (19)0.0386 (5)
H60.21970.60700.14130.046*
C70.2639 (3)0.5602 (2)0.3340 (2)0.0456 (5)
H7A0.31430.63850.36400.055*
H7B0.35500.50150.35850.055*
C80.1465 (3)0.5299 (2)0.4048 (2)0.0429 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0364 (3)0.0515 (4)0.0382 (3)0.0005 (2)0.0210 (2)0.0011 (2)
O10.0665 (11)0.0495 (10)0.0606 (10)0.0057 (8)0.0376 (9)0.0035 (8)
O20.0327 (7)0.0894 (14)0.0493 (9)0.0016 (8)0.0161 (7)0.0003 (9)
O30.0539 (10)0.0876 (14)0.0368 (8)0.0090 (9)0.0200 (7)0.0061 (9)
O40.0496 (9)0.0886 (14)0.0364 (8)0.0138 (9)0.0196 (7)0.0028 (8)
N10.0702 (13)0.0551 (13)0.0395 (10)0.0230 (10)0.0314 (9)0.0075 (9)
C10.0307 (9)0.0338 (11)0.0337 (9)0.0008 (8)0.0153 (8)0.0032 (8)
C20.0428 (11)0.0554 (15)0.0445 (12)0.0114 (10)0.0171 (9)0.0138 (11)
C30.0350 (11)0.0646 (17)0.0718 (17)0.0140 (11)0.0195 (11)0.0136 (14)
C40.0448 (12)0.0513 (15)0.0737 (16)0.0012 (10)0.0384 (12)0.0036 (12)
C50.0544 (13)0.0525 (14)0.0430 (12)0.0104 (11)0.0308 (10)0.0079 (10)
C60.0359 (10)0.0494 (13)0.0309 (10)0.0026 (9)0.0135 (8)0.0044 (9)
C70.0501 (12)0.0490 (14)0.0441 (12)0.0058 (10)0.0251 (10)0.0018 (10)
C80.0550 (13)0.0431 (13)0.0344 (10)0.0059 (10)0.0213 (10)0.0010 (9)
Geometric parameters (Å, º) top
S1—O11.4237 (17)C2—H20.9300
S1—O21.4376 (16)C3—C41.374 (4)
S1—N11.598 (2)C3—H30.9300
S1—C11.7590 (19)C4—C51.370 (3)
O3—C81.316 (2)C4—H40.9300
O3—H80.8200C5—C61.381 (3)
O4—C81.207 (3)C5—H50.9300
N1—C71.443 (3)C6—H60.9300
N1—H10.8600C7—C81.502 (3)
C1—C61.382 (3)C7—H7A0.9700
C1—C21.385 (3)C7—H7B0.9700
C2—C31.380 (3)
O1—S1—O2119.98 (11)C5—C4—C3120.6 (2)
O1—S1—N1107.60 (10)C5—C4—H4119.7
O2—S1—N1106.46 (10)C3—C4—H4119.7
O1—S1—C1107.60 (10)C4—C5—C6120.1 (2)
O2—S1—C1107.00 (9)C4—C5—H5119.9
N1—S1—C1107.66 (10)C6—C5—H5119.9
C8—O3—H8109.5C5—C6—C1119.04 (19)
C7—N1—S1123.95 (16)C5—C6—H6120.5
C7—N1—H1118.0C1—C6—H6120.5
S1—N1—H1118.0N1—C7—C8111.13 (18)
C6—C1—C2121.18 (19)N1—C7—H7A109.4
C6—C1—S1119.67 (15)C8—C7—H7A109.4
C2—C1—S1119.14 (15)N1—C7—H7B109.4
C3—C2—C1118.7 (2)C8—C7—H7B109.4
C3—C2—H2120.7H7A—C7—H7B108.0
C1—C2—H2120.7O4—C8—O3124.5 (2)
C4—C3—C2120.3 (2)O4—C8—C7123.80 (19)
C4—C3—H3119.8O3—C8—C7111.68 (19)
C2—C3—H3119.8
O1—S1—N1—C728.4 (2)S1—C1—C2—C3179.16 (19)
O2—S1—N1—C7158.27 (18)C1—C2—C3—C41.5 (4)
C1—S1—N1—C787.27 (19)C2—C3—C4—C51.6 (4)
O1—S1—C1—C6141.46 (18)C3—C4—C5—C60.1 (4)
O2—S1—C1—C611.3 (2)C4—C5—C6—C11.3 (4)
N1—S1—C1—C6102.82 (18)C2—C1—C6—C51.3 (3)
O1—S1—C1—C239.3 (2)S1—C1—C6—C5179.46 (17)
O2—S1—C1—C2169.46 (18)S1—N1—C7—C8121.9 (2)
N1—S1—C1—C276.44 (19)N1—C7—C8—O49.4 (3)
C6—C1—C2—C30.1 (3)N1—C7—C8—O3170.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.203.054 (3)174
O3—H8···O4ii0.821.862.678 (2)178
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H9NO4S
Mr215.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.5181 (3), 11.1302 (4), 10.6414 (4)
β (°) 112.600 (2)
V3)931.42 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.36 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.889, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
10301, 2338, 1644
Rint0.037
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.03
No. of reflections2338
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.86002.20003.054 (3)174.00
O3—H8···O4ii0.82001.86002.678 (2)178
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for their grant to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19.  Google Scholar
First citationBerredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019–1021.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationLa Roche, H. & Co, A. G. (1967). Chem. Abstr. 67, 73323r.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMartinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267–3273.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaichulis, A. J. (1977). US Patent No. 8 273 352.  Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar
First citationZhang, S.-S., Xu, L.-L., Zou, J., Bi, S. & Wen, Y.-H. (2006). Acta Cryst. E62, o4478–o4479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2008.08.002.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2283-o2284
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds