metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1557-m1558

Di­aqua­(1,4,7,10,13-penta­oxa­cyclo­penta­deca­ne)iron(II) bis­­(μ-cis-1,2-di­cyano-1,2-ethyl­enedi­thiol­ato)bis­­[(cis-1,2-di­cyano-1,2-ethyl­enedi­thiol­ato)ferrate(III)] 1,4,7,10,13-penta­oxa­cyclo­penta­decane disolvate

aDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: ksakai@chem.kyushu-univ.jp

(Received 30 October 2008; accepted 8 November 2008; online 20 November 2008)

The title compound, [Fe(C10H20O5)(H2O)2][Fe2(C4N2S2)4]·2C10H20O5, consists of an [FeII(15-crown-5)(H2O)2]2+ cation, sandwiched between and O—H⋯O hydrogen bonded by two additional 15-crown-5 ether mol­ecules and two independent [FeIII(mnt)2] anions, where 15-crown-5 ether denotes 1,4,7,10,13-penta­oxacyclo­penta­decane and mnt denotes cis-1,2-dicyano-1,2-ethyl­enedithiol­ate. Each independent [FeIII(mnt)2] unit forms a centrosymmetric dimer supported by two inter­monomer FeIII—S bonds [Fe—S = 2.4715 (9) and 2.4452 (9) Å]. In the crystal structure, the dimers form one-dimensional ππ stacks along the a axis, with an inter­planar separation of 3.38 (6) Å.

Related literature

For general background, see: Adams (1990[Adams, M. W. W. (1990). Biochim. Biophys. Acta, 1020, 115-145.]); Frey (2002[Frey, M. (2002). ChemBioChem, 3, 153-160.]); Georgakaki et al. (2003[Georgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238-239, 255-266.]); Gloaguen et al. (2001[Gloaguen, F., Lawrence, J. D. & Rauchfuss, T. B. (2001). J. Am. Chem. Soc. 123, 9476-9477.]); Liu et al. (2005[Liu, X., Ibrahim, S. K., Tard, C. & Pickett, C. J. (2005). Coord. Chem. Rev. 249, 1641-1652.]); McCleverty et al. (1967[McCleverty, J. A., Atherton, N. M., Locke, J., Wharton, E. J. & Winscom, C. J. (1967). J. Am. Chem. Soc. 89, 6082-6092.]); Na et al. (2006[Na, Y., Wang, M., Jin, K., Zhang, R. & Sun, L. (2006). J. Organomet. Chem. 691, 5045-5051.]); Nicolet et al. (1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13-23.]); Peters et al. (1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]); Sakata (2000[Sakata, T. (2000). Bull. Chem. Soc. Jpn, 73, 297-305.]); Sellmann et al. (1991[Sellmann, D., Geck, M. & Moll, M. (1991). J. Am. Chem. Soc. 113, 5259-5264.]); Sun et al. (2005[Sun, L., Åkermark, B. & Ott, S. (2005). Coord. Chem. Rev. 249, 1653-1663.]); Trasatti (1972[Trasatti, S. (1972). J. Electroanal. Chem. 39, 163-184.]); Yamaguchi et al. (2008[Yamaguchi, T., Masaoka, S. & Sakai, K. (2008). Unpublished results.]). For related structures, see: Hamilton & Bernal (1967[Hamilton, W. C. & Bernal, I. (1967). Inorg. Chem. 6, 2003-2008.]); Hao et al. (2005[Hao, X., Siegler, M. A., Parkin, S. & Brock, C. P. (2005). Cryst. Growth Des. 5, 2225-2232.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H20O5)(H2O)2][Fe2(C4N2S2)4]·2C10H20O5

  • Mr = 1425.08

  • Monoclinic, P 21 /c

  • a = 13.376 (4) Å

  • b = 15.739 (4) Å

  • c = 30.069 (8) Å

  • β = 91.600 (4)°

  • V = 6328 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 (2) K

  • 0.20 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.742, Tmax = 0.960

  • 68765 measured reflections

  • 13837 independent reflections

  • 10591 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.073

  • S = 1.04

  • 13837 reflections

  • 755 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1⋯O8 0.78 (3) 1.96 (3) 2.726 (3) 171 (3)
O6—H2⋯O10 0.76 (3) 2.13 (3) 2.882 (2) 173 (3)
O7—H3⋯O13 0.76 (3) 2.04 (3) 2.779 (2) 164 (3)
O7—H4⋯O16 0.81 (3) 1.94 (3) 2.740 (2) 170 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: KENX (Sakai, 2004[Sakai, K. (2004). KENX. Kyushu University, Japan.]); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.]), KENX and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Comment top

The Fe2S2 clusters (i.e., H-clusters) in Fe-only hydrogenases (FeHases) are known to be highly active as catalysts towards hydrogen evolution reaction (HER) (Adams, 1990; Peters et al., 1998; Nicolet et al., 1999; Frey, 2002), in spite of the fact that metal iron itself exhibits much lower catalytic activity toward HER than platinum does (Trasatti, 1972; Sakata, 2000). A large variety of structural and functional models of FeHases have been developed and their H2-evolving activities have been evaluated so far (Gloaguen et al., 2001; Georgakaki et al., 2003; Liu et al., 2005; Sun et al., 2005). However, up to now, only two water-soluble models of FeHases have been ascertained to exhibit H2-evolving activity in aqueous media, even though their activities are still quite low (Na et al., 2006). On the other hand, an iron-dithiolene complex, [FeII(1,2-benzenedithiolato-S,S)2]2-, considered as a bio-inspired model, was found to generate a half equivalent of H2 in tetrahydrofurane in the presence of HCl (Sellmann et al., 1991). In order to develop the more highly effective models of FeHases, our recent interests concentrate on such iron-dithiolene complexes, which are both air-stable and water-soluble. Compound (I) reported herein has been developed to improve the water-solubility of (NBu4)[FeIII(mnt)2] (Hamilton & Bernal, 1967). Although the sodium salt Na[FeIII(mnt)2] (McCleverty et al., 1967) is soluble in water, the compound prepared by the literature method was found to involve a large amount of impurities. Thus, the improvement in the purity of the complex was another reason to develop a new water-soluble salt of this complex. The H2-evolving activity of (I) will be separately reported elsewhere (Yamaguchi et al., unpublished results).

The asymmetric unit consists of a [FeII(H2O)2(15-crown-5)3]2+ cation (Fig. 1) and two [FeIII(mnt)2]- anions (Figs. 2 and 3). The oxidation states of these iron centers can be unambiguously judged from the overall charge of each complex together with the neutralization principle applied to any salt. The validity of these assignments can also be discussed in terms of the Fe—O and Fe—S distances (see below).

The FeII ion encapsulated within the central 15-crown-5 ether is ligated by five oxygen atoms of the ether and also by two oxygen atoms of axial aqua ligands (Fig. 1). The central [FeII(H2O)2(15-crown-5)]2+ unit is sandwiched by two additional 15-crown-5 ether molecules, where each association is stabilized with two hydrogen bonds formed between the axial aqua ligand and two oxygen atoms of 15-crown-5 ether (see Table 1 and Fig. 1). The FeII—O(15-crown-5) distances in (I) [2.1884 (17)–2.2367 (17) Å] are comparable to those reported for [FeII(H2O)2(15-crown-5)](NO3)2 [2.187 (4)–2.246 (4) Å] (Hao et al., 2005). Note that this is the second example showing the structure of [FeII(H2O)2(15-crown-5)]2+. The FeIIO(aqua) distances in (I) [2.0490 (17) and 2.0818 (17) Å] are similarly comparable to those reported for [FeII(H2O)2(15-crown-5)](NO3)2 [2.063 (5) and 2.071 (5) Å] (Hao et al., 2005).

The two independent mononuclear [FeIII(mnt)2]- units respectively form a dimer with an inversion center located at the center of each dimer (see Figs. 2 and 3). The monomer-monomer association is supported by two FeIII—S bonds [Fe1—S2i = 2.4715 (9) and Fe2—S8ii = 2.4452 (9) Å; symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, -z]. This structural feature well resembles those observed for (NBu4)[FeIII(mnt)2] [Fe—S(intermonomer) = 2.46 Å, where the estimated standard deviation is not given in the literature] (Hamilton & Bernal, 1967). Both FeIII ions are considered to have a distorted square pyramidal coordination geometry. The FeIII ion is ligated by four sulfur atoms with shorter Fe—S distances [2.2240 (7)–2.2447 (8) Å] and axially ligated by a sulfur atom from the adjacent monomer with a longer Fe—S distance [2.4452 (9) and 2.4715 (9) Å]. Atom Fe1 is shifted out of the least-squares plane defined with four atoms S1—S4 by 0.3634 (4) Å, even though the four-atom r.m.s. deviation given in the calculation was 0.177 Å. In the same manner, atom Fe2 is shifted out of the pseudo plane defined with S5—S8 by 0.3858 (4) Å, where the four-atom r.m.s. deviation was 0.104 Å.

The dihedral angle between the C1—C4/N1—N2 and C5—C8/N3—N4 planes is 21.40 (5)°, while that between the C9—C12/N5—N6 and C13—C16/N7—N8 planes is 20.03 (5)°. Shifts of sulfur atoms from the corresponding C4N2 plane are relatively large, where shifts of atoms S1—S8 from the individual plane are calculated to be 0.090 (3), 0.027 (3), 0.034 (3), 0.009 (3), 0.040 (3), 0.065 (3), 0.107 (3), and 0.003 (3) Å, respectively.

On the other hand, it is also important to compare the structural features of (I) with those of the H-clusters in FeHases. At the fully oxidized state, the Fe—Fe distance in the H-cluster from Clostridium pasteurianum was reported to be ca 2.62 Å (Peters et al., 1998), which is much shorter than those observed for (I) [Fe1—Fe1i = 3.2015 (9) Å, Fe2—Fe2ii = 2.9939 (8) Å; symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, -z]. Therefore, the metal-metal interactions in (I) is much weaker than those found in the H-cluster. The Fe—S—Fe angles in (I) [Fe1—S2—Fe1i = 85.36 (2)°, Fe2—S8—Fe2ii = 79.47 (2)°; symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, -z] are much larger than the value of ca 68.4° observed for the H-cluster (Peters et al., 1998), which also reflects that the metal-metal interaction in the H-cluster is stronger than those in (I). On the other hand, the average Fe—S distance in the H-cluster (ca 2.23 Å; Peters et al., 1998) is comparable to the intramonomer Fe—S distances in (I) [2.2240 (7)–2.2447 (8) Å] but is much shorter than the intermonomer Fe—S distances in (I) [2.4452 (9)–2.4715 (9) Å].

Finally, the cations and anions separately form their individual one-dimensional stacks along the a axis (see Figure 4). The stack of cations merely arise from the van der Waals interactions, while that of anions is stabilized with a relatively strong π-π stacking interactions formed between two adjacent mnt moieties, where only one independent stacking geometry can be found in the crystal. As shown in Figure 5, a set of atoms C1—C4/N1—N2 and that of C9i, C11i, N12i, S6i have a significant contribution to the π-π association at this geometry. The interplanar separation is calculated as 3.376 (55) Å based on the average shift of atoms C9i, C11i, N12i and S6i from the best plane defined by atoms C1—C4/N1—N2, and important short contacts at this geometry are C4—C11i = 3.371 (3) and N2—C12i = 3.324 (3) Å [Symmetry code for (i) 1 - x, 1 - y, -z].

Related literature top

For background information, see: Adams (1990); Georgakaki et al. (2003); Gloaguen et al. (2001); Hamilton & Bernal (1967); Hao et al. (2005); Liu et al. (2005); McCleverty et al. (1967); Na et al. (2006); Nicolet et al. (1999); Peters et al. (1998); Sakata (2000); Sellmann et al. (1991); Sun et al. (2005); Trasatti (1972); Frey (2002); Yamaguchi et al. (2008). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For background information, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

Compound (I) was prepared as follows. Na[FeIII(mnt)2].3H2O was prepared as previously described (McCleverty et al., 1967). To a solution of Na[FeIII(mnt)2].3H2O (0.108 g, 0.26 mmol) in ethanol (15 ml) was added 15-crown-5 ether (0.209 g, 0.95 mmol). The resulting dark-brown solution was stirred for 5 min and evaporated under reduced pressure until crystallization started. Standing of the solution at room temperature for 4 days afforded the black needles of (I), which were collected by filtration, washed with cold ethanol, and dried in vacuo. Yield: 0.072 g (39%). Since the starting material contains about 30% of FeII species (revealed by Mössbauer spectroscopy, Yamaguchi et al., unpublished results), FeII ions are clathrated by 15-crown-5 ether molecules in the cations. Analysis calculated for C46H64Fe3N8O17S8: C, 38.77; H, 4.53; N, 7.86. Found: C, 38.64; H, 4.50; N, 7.96. IR (ν, cm-1): 3360 (w), 3265 (w), 2872 (w), 2216 (w), 2204 (m), 1657 (w), 1488 (m), 1472 (w), 1456 (w), 1353 (m), 1302 (w), 1290 (w), 1276 (w), 1249 (m), 1141 (m), 1118 (s), 1083 (s), 1039 (s), 961 (s), 937 (s), 850 (m), 835 (m), 608 (w), 546 (w), 505 (s), 432 (w), 420 (w), 411 (w).

Refinement top

H atoms except for those of water molecules were placed in idealized positions (methylene C—H = 0.99 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq (methylene C). H atoms of water molecules were refined isotropically. The hydrogen bonding geometries of these H atoms well support the validity of the positions determined by the least-squares calculations. In the final difference Fourier map, the highest peak was located 0.92 Å from atom Fe1. The deepest hole was located 0.72 Å from atom Fe1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The structure of the [FeII(15-crown-5)3]2+ cation showing the atom-labeling scheme. Hydrogen atoms except for those of water molecules are omitted for clarity. Thermal ellipsoids are displayed at the 50% probability. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of one independent dimer of [FeIII(mnt)2]22-, showing the atom-labeling scheme [symmetry codes: (i) 1 - x, 1 - y, -z]. Thermal ellipsoids are displayed at the 50% probability.
[Figure 3] Fig. 3. The structure of the second independent dimer of [FeIII(mnt)2]22-, showing the atom-labeling scheme [symmetry codes: (ii) -x, 1 - y, -z]. Thermal ellipsoids are displayed at the 50% probability.
[Figure 4] Fig. 4. A view along the a axis, showing the manner in which the cations and anions separately stack along the a axis to give one-dimensional columns. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are displayed at the 50% probability.
[Figure 5] Fig. 5. A view perpendicular to the plane defined by atoms C1—C4/N1—N2 which has a π-stack to the plane defined by atoms C9i, C11i, N12i and S6i [Symmetry code for (i) 1 - x, 1 - y, -z]. Thermal ellipsoids are displayed at the 50% probability.
Diaqua(1,4,7,10,13-pentaoxacyclopentadecane)iron(II) bis(µ-cis-1,2-dicyano-1,2-ethylenedithiolato)bis[(cis- 1,2-dicyano-1,2-ethylenedithiolato)ferrate(III)] 1,4,7,10,13-pentaoxacyclopentadecane disolvate top
Crystal data top
[Fe(C10H20O5)(H2O)2][Fe2(C4N2S2)4]·2C10H20O5F(000) = 2952
Mr = 1425.08Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9808 reflections
a = 13.376 (4) Åθ = 2.4–27.5°
b = 15.739 (4) ŵ = 1.01 mm1
c = 30.069 (8) ÅT = 100 K
β = 91.600 (4)°Needles, black
V = 6328 (3) Å30.20 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
13837 independent reflections
Radiation source: rotating anode with a mirror focusing unit10591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.742, Tmax = 0.960k = 2020
68765 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0267P)2 + 3.2078P]
where P = (Fo2 + 2Fc2)/3
13837 reflections(Δ/σ)max = 0.001
755 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Fe(C10H20O5)(H2O)2][Fe2(C4N2S2)4]·2C10H20O5V = 6328 (3) Å3
Mr = 1425.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.376 (4) ŵ = 1.01 mm1
b = 15.739 (4) ÅT = 100 K
c = 30.069 (8) Å0.20 × 0.05 × 0.04 mm
β = 91.600 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
13837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
10591 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.960Rint = 0.056
68765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
13837 reflectionsΔρmin = 0.34 e Å3
755 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

12.5966 (0.0045) x + 3.9174 (0.0133) y - 7.5943 (0.0193) z = 9.5633 (0.0036)

* -0.0136 (0.0015) C1 * 0.0089 (0.0018) C2 * 0.0060 (0.0015) C3 * 0.0086 (0.0018) C4 * -0.0017 (0.0012) N1 * -0.0081 (0.0012) N2 3.4170 (0.0029) C9_$1 3.3793 (0.0026) C11_$1 3.2979 (0.0031) C12_$1 3.4112 (0.0014) S6_$1

Rms deviation of fitted atoms = 0.0086

13.1161 (0.0038) x + 0.5753 (0.0029) y - 6.6201 (0.0054) z = 8.3501 (0.0028)

Angle to previous plane (with approximate e.s.d.) = 13.04 (0.05)

* 0.1774 (0.0003) S1 * -0.1759 (0.0003) S2 * -0.1778 (0.0003) S3 * 0.1763 (0.0003) S4 - 0.3634 (0.0004) Fe1

Rms deviation of fitted atoms = 0.1768

12.9276 (0.0037) x + 2.2639 (0.0028) y - 7.2069 (0.0056) z = 2.5969 (0.0017)

Angle to previous plane (with approximate e.s.d.) = 6.31 (0.02)

* 0.1070 (0.0003) S5 * -0.1009 (0.0003) S6 * 0.1003 (0.0003) S7 * -0.1064 (0.0003) S8 - 0.3858 (0.0004) Fe2

Rms deviation of fitted atoms = 0.1037

12.5966 (0.0045) x + 3.9175 (0.0133) y - 7.5943 (0.0193) z = 9.5633 (0.0036)

Angle to previous plane (with approximate e.s.d.) = 6.24 (0.04)

* -0.0136 (0.0015) C1 * 0.0089 (0.0018) C2 * 0.0060 (0.0015) C3 * 0.0086 (0.0018) C4 * -0.0017 (0.0012) N1 * -0.0081 (0.0012) N2 - 0.0896 (0.0028) S1 - 0.0274 (0.0028) S2

Rms deviation of fitted atoms = 0.0086

13.2007 (0.0042) x - 1.6498 (0.0149) y - 4.5212 (0.0193) z = 7.1258 (0.0133)

Angle to previous plane (with approximate e.s.d.) = 21.40 (0.05)

* 0.0089 (0.0016) C5 * 0.0023 (0.0018) C6 * -0.0072 (0.0016) C7 * -0.0063 (0.0020) C8 * -0.0046 (0.0012) N3 * 0.0069 (0.0013) N4 0.0344 (0.0030) S3 - 0.0088 (0.0028) S4

Rms deviation of fitted atoms = 0.0064

12.4166 (0.0053) x + 3.7221 (0.0089) y - 9.4088 (0.0267) z = 3.2121 (0.0070)

Angle to previous plane (with approximate e.s.d.) = 22.10 (0.05)

* -0.0149 (0.0016) C9 * 0.0022 (0.0018) C10 * 0.0105 (0.0016) C11 * 0.0072 (0.0018) C12 * 0.0036 (0.0012) N5 * -0.0086 (0.0012) N6 - 0.0398 (0.0028) S5 0.0647 (0.0028) S6

Rms deviation of fitted atoms = 0.0089

13.3465 (0.0038) x + 1.0421 (0.0093) y - 0.5940 (0.0281) z = 1.7628 (0.0060)

Angle to previous plane (with approximate e.s.d.) = 20.03 (0.05)

* -0.0211 (0.0015) C13 * -0.0038 (0.0019) C14 * 0.0151 (0.0015) C15 * 0.0182 (0.0018) C16 * 0.0098 (0.0012) N7 * -0.0181 (0.0012) N8 - 0.1066 (0.0028) S7 0.0032 (0.0028) S8

Rms deviation of fitted atoms = 0.0155

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.59954 (2)0.527018 (19)0.027212 (10)0.01380 (7)
Fe20.08164 (2)0.559112 (19)0.015272 (11)0.01436 (7)
Fe30.22188 (2)0.081610 (19)0.160542 (10)0.01279 (7)
S10.65583 (4)0.39842 (4)0.045857 (19)0.01683 (12)
S20.57986 (4)0.48479 (3)0.043795 (18)0.01451 (11)
S30.64623 (4)0.56941 (4)0.095356 (19)0.01793 (12)
S40.62207 (4)0.65871 (4)0.001767 (19)0.01773 (12)
S50.16136 (4)0.47243 (3)0.062681 (19)0.01600 (12)
S60.11068 (4)0.66775 (3)0.061957 (19)0.01783 (12)
S70.07146 (4)0.65027 (3)0.041804 (19)0.01742 (12)
S80.09565 (4)0.45117 (3)0.032270 (18)0.01515 (11)
O10.19270 (11)0.12133 (10)0.08849 (5)0.0193 (3)
O20.27147 (11)0.02428 (10)0.11811 (5)0.0197 (3)
O30.23720 (13)0.03008 (10)0.20354 (5)0.0270 (4)
O40.19983 (11)0.12270 (10)0.23080 (5)0.0196 (3)
O50.20035 (11)0.22228 (10)0.15824 (5)0.0206 (4)
O60.37295 (12)0.10924 (12)0.17086 (6)0.0191 (4)
O70.07301 (12)0.05129 (12)0.15570 (6)0.0207 (4)
O80.44831 (11)0.21480 (10)0.10820 (5)0.0200 (3)
O90.57976 (11)0.07865 (10)0.13190 (5)0.0218 (4)
O100.51901 (11)0.00073 (10)0.21446 (5)0.0218 (4)
O110.49149 (11)0.15375 (10)0.26444 (6)0.0244 (4)
O120.48824 (12)0.28340 (10)0.19532 (5)0.0240 (4)
O130.07486 (11)0.12746 (10)0.10257 (5)0.0215 (4)
O140.01589 (12)0.03072 (10)0.05980 (5)0.0236 (4)
O150.01408 (12)0.14420 (10)0.13565 (5)0.0248 (4)
O160.00158 (11)0.05479 (10)0.21969 (5)0.0208 (4)
O170.14297 (12)0.06099 (10)0.18609 (6)0.0240 (4)
N10.70216 (15)0.18374 (13)0.00039 (7)0.0255 (5)
N20.59855 (15)0.29093 (13)0.11533 (7)0.0262 (5)
N30.69081 (15)0.76836 (13)0.16152 (7)0.0254 (5)
N40.66447 (19)0.88016 (14)0.04131 (7)0.0365 (6)
N50.25737 (15)0.45610 (13)0.17831 (7)0.0275 (5)
N60.18424 (16)0.70649 (13)0.18215 (7)0.0273 (5)
N70.07441 (17)0.65303 (14)0.16666 (7)0.0315 (5)
N80.09250 (16)0.40171 (13)0.15397 (7)0.0285 (5)
C10.64947 (15)0.34198 (14)0.00380 (8)0.0164 (5)
C20.67963 (16)0.25395 (15)0.00215 (7)0.0188 (5)
C30.61651 (15)0.37748 (14)0.04274 (7)0.0154 (5)
C40.60718 (16)0.32967 (14)0.08322 (8)0.0175 (5)
C50.65634 (16)0.67935 (14)0.09037 (7)0.0171 (5)
C60.67553 (16)0.72830 (15)0.13001 (8)0.0197 (5)
C70.64611 (16)0.71784 (14)0.05002 (8)0.0178 (5)
C80.65594 (18)0.80839 (16)0.04549 (8)0.0237 (5)
C90.18064 (15)0.53441 (14)0.10999 (7)0.0164 (5)
C100.22371 (16)0.49240 (14)0.14840 (8)0.0186 (5)
C110.15743 (16)0.61876 (14)0.11004 (7)0.0177 (5)
C120.17233 (17)0.66872 (14)0.14981 (8)0.0193 (5)
C130.08089 (15)0.58501 (14)0.08816 (7)0.0165 (5)
C140.07722 (17)0.62397 (15)0.13157 (8)0.0208 (5)
C150.09045 (15)0.49926 (14)0.08495 (7)0.0159 (5)
C160.09320 (16)0.44502 (15)0.12327 (8)0.0184 (5)
C170.24863 (18)0.07096 (16)0.05811 (8)0.0253 (6)
H50.32010.08750.05940.030*
H60.22240.07880.02730.030*
C180.23663 (18)0.01932 (16)0.07239 (8)0.0265 (6)
H70.16550.03650.06970.032*
H80.27650.05740.05360.032*
C190.25546 (18)0.10670 (15)0.13776 (9)0.0265 (6)
H90.29410.15060.12210.032*
H100.18370.12200.13570.032*
C200.29009 (17)0.10070 (15)0.18559 (8)0.0243 (5)
H110.27420.15360.20180.029*
H120.36320.09100.18780.029*
C210.23440 (18)0.01912 (16)0.25106 (8)0.0260 (6)
H130.28400.05690.26600.031*
H140.16720.03380.26170.031*
C220.25811 (17)0.07187 (16)0.26164 (8)0.0233 (5)
H150.24040.08530.29260.028*
H160.33030.08300.25830.028*
C230.21768 (19)0.21235 (15)0.23597 (9)0.0274 (6)
H170.29000.22500.23420.033*
H180.19410.23230.26510.033*
C240.16045 (19)0.25483 (15)0.19884 (8)0.0275 (6)
H190.08830.24150.20040.033*
H200.16910.31720.20050.033*
C250.14642 (18)0.25152 (15)0.11908 (8)0.0251 (6)
H210.14970.31420.11690.030*
H220.07540.23420.11990.030*
C260.19651 (18)0.21083 (15)0.08030 (8)0.0245 (6)
H230.16060.22510.05210.029*
H240.26670.23030.07860.029*
C270.52881 (17)0.18696 (16)0.08105 (8)0.0242 (5)
H250.59080.21820.08950.029*
H260.51240.19890.04940.029*
C280.54479 (18)0.09321 (16)0.08753 (8)0.0256 (5)
H270.48120.06240.08190.031*
H280.59450.07210.06640.031*
C290.58859 (19)0.00964 (15)0.14211 (9)0.0290 (6)
H290.64400.03490.12540.035*
H300.52600.03950.13330.035*
C300.60860 (18)0.01933 (16)0.19102 (9)0.0280 (6)
H310.62950.07840.19780.034*
H320.66340.01930.20080.034*
C310.53724 (18)0.00910 (16)0.26145 (8)0.0264 (6)
H330.58880.03270.27110.032*
H340.47500.00440.27710.032*
C320.57162 (18)0.09675 (16)0.27461 (9)0.0301 (6)
H350.58900.09860.30680.036*
H360.63150.11280.25790.036*
C330.51659 (18)0.24121 (15)0.27080 (8)0.0252 (5)
H370.56480.24620.29620.030*
H380.45550.27300.27840.030*
C340.56127 (18)0.28076 (16)0.23036 (8)0.0261 (6)
H390.58450.33900.23750.031*
H400.61960.24700.22110.031*
C350.52417 (19)0.32257 (16)0.15643 (8)0.0260 (6)
H410.59100.29990.14960.031*
H420.53000.38470.16100.031*
C360.45148 (18)0.30401 (15)0.11875 (8)0.0232 (5)
H430.38390.32310.12690.028*
H440.47100.33640.09210.028*
C370.07617 (18)0.11119 (15)0.05578 (8)0.0244 (5)
H450.01030.12660.04390.029*
H460.12720.14790.04100.029*
C380.09861 (18)0.01978 (16)0.04446 (9)0.0275 (6)
H470.16040.00140.05900.033*
H480.10860.01320.01190.033*
C390.03454 (19)0.12009 (15)0.05793 (8)0.0267 (6)
H490.02960.15010.05380.032*
H500.07860.13240.03170.032*
C400.08261 (18)0.15415 (16)0.09902 (8)0.0265 (6)
H510.14510.12260.10460.032*
H520.09940.21500.09490.032*
C410.05309 (18)0.17727 (15)0.17582 (8)0.0249 (5)
H530.05210.24020.17520.030*
H540.12310.15840.17910.030*
C420.01075 (17)0.14521 (14)0.21404 (8)0.0225 (5)
H550.00910.17410.24170.027*
H560.08150.15950.20890.027*
C430.08396 (18)0.02924 (16)0.24395 (8)0.0273 (6)
H570.06900.03310.27630.033*
H580.14110.06720.23670.033*
C440.10995 (19)0.06062 (16)0.23150 (8)0.0272 (6)
H590.16350.08210.25060.033*
H600.05060.09770.23560.033*
C450.16276 (19)0.14463 (16)0.16992 (9)0.0300 (6)
H610.10760.18330.17920.036*
H620.22560.16630.18230.036*
C460.17198 (17)0.14146 (16)0.12004 (9)0.0279 (6)
H630.21770.09490.11070.033*
H640.19990.19570.10850.033*
H40.049 (2)0.0167 (18)0.1723 (9)0.033 (8)*
H30.035 (2)0.0648 (18)0.1378 (10)0.035 (9)*
H20.409 (2)0.0815 (19)0.1842 (10)0.037 (9)*
H10.399 (2)0.1409 (19)0.1551 (10)0.041 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01341 (15)0.01369 (16)0.01430 (17)0.00033 (12)0.00008 (12)0.00119 (13)
Fe20.01444 (15)0.01257 (16)0.01611 (17)0.00023 (12)0.00095 (12)0.00028 (13)
Fe30.01362 (15)0.01173 (16)0.01300 (17)0.00013 (12)0.00025 (12)0.00072 (12)
S10.0191 (3)0.0155 (3)0.0158 (3)0.0029 (2)0.0008 (2)0.0010 (2)
S20.0140 (2)0.0144 (3)0.0152 (3)0.0007 (2)0.0008 (2)0.0009 (2)
S30.0214 (3)0.0159 (3)0.0163 (3)0.0000 (2)0.0032 (2)0.0003 (2)
S40.0228 (3)0.0159 (3)0.0145 (3)0.0029 (2)0.0004 (2)0.0008 (2)
S50.0164 (3)0.0136 (3)0.0180 (3)0.0012 (2)0.0013 (2)0.0015 (2)
S60.0212 (3)0.0131 (3)0.0192 (3)0.0005 (2)0.0000 (2)0.0008 (2)
S70.0203 (3)0.0134 (3)0.0186 (3)0.0008 (2)0.0008 (2)0.0001 (2)
S80.0156 (3)0.0132 (3)0.0167 (3)0.0005 (2)0.0017 (2)0.0000 (2)
O10.0208 (8)0.0205 (9)0.0166 (9)0.0025 (6)0.0017 (6)0.0023 (7)
O20.0197 (8)0.0178 (8)0.0215 (9)0.0014 (6)0.0026 (7)0.0053 (7)
O30.0410 (10)0.0182 (9)0.0214 (10)0.0067 (7)0.0031 (8)0.0036 (7)
O40.0199 (8)0.0226 (9)0.0162 (9)0.0002 (7)0.0019 (6)0.0023 (7)
O50.0245 (8)0.0148 (8)0.0223 (9)0.0025 (6)0.0028 (7)0.0008 (7)
O60.0145 (8)0.0197 (9)0.0231 (10)0.0012 (7)0.0006 (7)0.0048 (8)
O70.0144 (8)0.0258 (10)0.0218 (10)0.0038 (7)0.0025 (7)0.0086 (8)
O80.0184 (8)0.0218 (9)0.0198 (9)0.0009 (6)0.0026 (7)0.0002 (7)
O90.0225 (8)0.0185 (9)0.0243 (9)0.0013 (7)0.0003 (7)0.0012 (7)
O100.0181 (8)0.0227 (9)0.0244 (9)0.0002 (7)0.0027 (7)0.0017 (7)
O110.0221 (8)0.0206 (9)0.0302 (10)0.0007 (7)0.0068 (7)0.0013 (7)
O120.0249 (9)0.0296 (10)0.0174 (9)0.0071 (7)0.0028 (7)0.0021 (7)
O130.0162 (8)0.0246 (9)0.0236 (9)0.0002 (7)0.0012 (7)0.0020 (7)
O140.0240 (9)0.0213 (9)0.0249 (10)0.0017 (7)0.0060 (7)0.0018 (7)
O150.0244 (9)0.0274 (10)0.0225 (10)0.0070 (7)0.0017 (7)0.0017 (7)
O160.0192 (8)0.0203 (9)0.0232 (9)0.0007 (7)0.0045 (7)0.0017 (7)
O170.0240 (9)0.0218 (9)0.0264 (10)0.0007 (7)0.0042 (7)0.0007 (7)
N10.0302 (11)0.0200 (11)0.0264 (12)0.0057 (9)0.0026 (9)0.0006 (9)
N20.0280 (11)0.0267 (12)0.0238 (12)0.0058 (9)0.0014 (9)0.0058 (10)
N30.0285 (11)0.0254 (12)0.0222 (12)0.0046 (9)0.0010 (9)0.0026 (9)
N40.0644 (17)0.0216 (13)0.0237 (13)0.0103 (11)0.0075 (11)0.0019 (10)
N50.0281 (11)0.0271 (12)0.0270 (12)0.0027 (9)0.0071 (9)0.0010 (10)
N60.0383 (12)0.0194 (11)0.0240 (12)0.0025 (9)0.0009 (10)0.0031 (9)
N70.0469 (14)0.0255 (12)0.0220 (13)0.0032 (10)0.0016 (10)0.0027 (10)
N80.0339 (12)0.0273 (12)0.0245 (12)0.0063 (9)0.0067 (9)0.0048 (10)
C10.0131 (10)0.0155 (11)0.0207 (13)0.0008 (9)0.0011 (9)0.0022 (9)
C20.0168 (11)0.0238 (13)0.0159 (12)0.0007 (9)0.0022 (9)0.0022 (10)
C30.0119 (10)0.0147 (11)0.0199 (12)0.0001 (8)0.0044 (9)0.0035 (9)
C40.0158 (11)0.0155 (12)0.0212 (13)0.0037 (9)0.0019 (9)0.0008 (10)
C50.0148 (11)0.0177 (12)0.0188 (12)0.0014 (9)0.0012 (9)0.0023 (9)
C60.0180 (11)0.0210 (12)0.0201 (13)0.0015 (9)0.0003 (9)0.0023 (10)
C70.0170 (11)0.0180 (12)0.0184 (12)0.0032 (9)0.0019 (9)0.0038 (10)
C80.0313 (13)0.0243 (14)0.0158 (13)0.0064 (10)0.0043 (10)0.0024 (10)
C90.0137 (10)0.0187 (12)0.0167 (12)0.0020 (9)0.0004 (9)0.0016 (9)
C100.0181 (11)0.0168 (12)0.0210 (13)0.0032 (9)0.0005 (10)0.0041 (10)
C110.0153 (11)0.0187 (12)0.0190 (12)0.0040 (9)0.0014 (9)0.0009 (10)
C120.0213 (12)0.0143 (12)0.0224 (14)0.0015 (9)0.0013 (10)0.0029 (10)
C130.0126 (10)0.0189 (12)0.0180 (12)0.0003 (9)0.0009 (9)0.0009 (9)
C140.0219 (12)0.0177 (12)0.0228 (14)0.0024 (9)0.0011 (10)0.0034 (10)
C150.0136 (10)0.0185 (12)0.0157 (12)0.0002 (9)0.0015 (9)0.0005 (9)
C160.0163 (11)0.0204 (12)0.0187 (13)0.0008 (9)0.0030 (9)0.0040 (10)
C170.0206 (12)0.0409 (16)0.0145 (13)0.0036 (11)0.0001 (10)0.0028 (11)
C180.0263 (13)0.0321 (15)0.0209 (14)0.0024 (11)0.0012 (10)0.0128 (11)
C190.0261 (13)0.0138 (12)0.0395 (16)0.0032 (10)0.0035 (11)0.0047 (11)
C200.0198 (12)0.0149 (12)0.0378 (16)0.0006 (9)0.0051 (10)0.0051 (11)
C210.0259 (13)0.0328 (15)0.0189 (13)0.0038 (11)0.0051 (10)0.0103 (11)
C220.0194 (12)0.0345 (15)0.0158 (13)0.0006 (10)0.0024 (9)0.0034 (11)
C230.0318 (14)0.0231 (13)0.0273 (15)0.0018 (11)0.0010 (11)0.0126 (11)
C240.0333 (14)0.0181 (13)0.0312 (15)0.0049 (10)0.0015 (11)0.0086 (11)
C250.0268 (13)0.0158 (12)0.0321 (15)0.0002 (10)0.0084 (11)0.0076 (11)
C260.0267 (13)0.0238 (13)0.0225 (14)0.0069 (10)0.0068 (10)0.0111 (11)
C270.0211 (12)0.0324 (14)0.0194 (13)0.0003 (10)0.0035 (10)0.0004 (11)
C280.0234 (12)0.0305 (14)0.0231 (14)0.0020 (10)0.0020 (10)0.0059 (11)
C290.0285 (13)0.0206 (13)0.0383 (16)0.0032 (10)0.0071 (12)0.0037 (11)
C300.0225 (12)0.0206 (13)0.0411 (17)0.0049 (10)0.0029 (11)0.0044 (12)
C310.0260 (13)0.0272 (14)0.0256 (15)0.0016 (10)0.0069 (11)0.0041 (11)
C320.0251 (13)0.0325 (15)0.0320 (16)0.0021 (11)0.0110 (11)0.0024 (12)
C330.0298 (13)0.0253 (14)0.0202 (13)0.0028 (10)0.0036 (10)0.0038 (11)
C340.0246 (13)0.0291 (14)0.0243 (14)0.0073 (10)0.0064 (10)0.0012 (11)
C350.0322 (14)0.0237 (13)0.0220 (14)0.0107 (11)0.0006 (11)0.0002 (11)
C360.0287 (13)0.0189 (12)0.0219 (13)0.0007 (10)0.0004 (10)0.0034 (10)
C370.0232 (12)0.0255 (13)0.0241 (14)0.0008 (10)0.0048 (10)0.0052 (11)
C380.0249 (13)0.0317 (15)0.0253 (14)0.0018 (11)0.0090 (11)0.0006 (11)
C390.0329 (14)0.0252 (14)0.0217 (14)0.0023 (11)0.0038 (11)0.0045 (11)
C400.0289 (13)0.0231 (13)0.0273 (15)0.0067 (10)0.0062 (11)0.0016 (11)
C410.0281 (13)0.0194 (13)0.0273 (14)0.0072 (10)0.0024 (11)0.0021 (10)
C420.0232 (12)0.0201 (13)0.0243 (14)0.0007 (10)0.0021 (10)0.0056 (10)
C430.0250 (13)0.0327 (15)0.0246 (14)0.0003 (11)0.0083 (10)0.0037 (11)
C440.0297 (14)0.0296 (14)0.0228 (14)0.0028 (11)0.0082 (11)0.0017 (11)
C450.0285 (14)0.0230 (14)0.0390 (17)0.0059 (11)0.0090 (12)0.0027 (12)
C460.0187 (12)0.0265 (14)0.0386 (16)0.0044 (10)0.0023 (11)0.0075 (12)
Geometric parameters (Å, º) top
Fe1—S12.2259 (8)C13—C151.359 (3)
Fe1—S32.2276 (8)C13—C141.442 (3)
Fe1—S42.2328 (8)C15—C161.435 (3)
Fe1—S22.2447 (8)C17—C181.494 (4)
Fe1—S2i2.4715 (9)C19—C201.502 (3)
Fe2—S52.2240 (7)C21—C221.499 (3)
Fe2—S82.2316 (8)C23—C241.494 (3)
Fe2—S72.2382 (8)C25—C261.504 (3)
Fe2—S62.2394 (8)C27—C281.503 (3)
Fe2—S8ii2.4452 (9)C29—C301.495 (4)
Fe3—O72.0490 (17)C31—C321.504 (3)
Fe3—O62.0818 (17)C33—C341.505 (3)
Fe3—O32.1884 (17)C35—C361.501 (3)
Fe3—O22.2120 (16)C37—C381.507 (3)
Fe3—O52.2335 (16)C39—C401.507 (3)
Fe3—O42.2367 (17)C41—C421.500 (3)
Fe3—O12.2782 (16)C43—C441.501 (3)
S1—C11.737 (2)C45—C461.502 (4)
S2—C31.759 (2)C17—H50.9900
S2—Fe1i2.4715 (9)C17—H60.9900
S3—C51.742 (2)C18—H70.9900
S4—C71.746 (2)C18—H80.9900
S5—C91.738 (2)C19—H90.9900
S6—C111.739 (2)C19—H100.9900
S7—C131.739 (2)C20—H110.9900
S8—C151.755 (2)C20—H120.9900
S8—Fe2ii2.4452 (9)C21—H130.9900
O1—C261.431 (3)C21—H140.9900
O1—C171.435 (3)C22—H150.9900
O2—C181.441 (3)C22—H160.9900
O2—C191.444 (3)C23—H170.9900
O3—C201.431 (3)C23—H180.9900
O3—C211.441 (3)C24—H190.9900
O4—C221.438 (3)C24—H200.9900
O4—C231.439 (3)C25—H210.9900
O5—C251.439 (3)C25—H220.9900
O5—C241.440 (3)C26—H230.9900
O6—H20.76 (3)C26—H240.9900
O6—H10.78 (3)C27—H250.9900
O7—H40.81 (3)C27—H260.9900
O7—H30.76 (3)C28—H270.9900
O8—C271.438 (3)C28—H280.9900
O8—C361.440 (3)C29—H290.9900
O9—C281.420 (3)C29—H300.9900
O9—C291.427 (3)C30—H310.9900
O10—C311.433 (3)C30—H320.9900
O10—C301.442 (3)C31—H330.9900
O11—C321.424 (3)C31—H340.9900
O11—C331.429 (3)C32—H350.9900
O12—C341.417 (3)C32—H360.9900
O12—C351.418 (3)C33—H370.9900
O13—C371.430 (3)C33—H380.9900
O13—C461.432 (3)C34—H390.9900
O14—C381.428 (3)C34—H400.9900
O14—C391.429 (3)C35—H410.9900
O15—C401.422 (3)C35—H420.9900
O15—C411.428 (3)C36—H430.9900
O16—C431.432 (3)C36—H440.9900
O16—C421.439 (3)C37—H450.9900
O17—C441.423 (3)C37—H460.9900
O17—C451.426 (3)C38—H470.9900
N1—C21.147 (3)C38—H480.9900
N2—C41.145 (3)C39—H490.9900
N3—C61.152 (3)C39—H500.9900
N4—C81.143 (3)C40—H510.9900
N5—C101.147 (3)C40—H520.9900
N6—C121.147 (3)C41—H530.9900
N7—C141.150 (3)C41—H540.9900
N8—C161.147 (3)C42—H550.9900
C1—C31.360 (3)C42—H560.9900
C1—C21.443 (3)C43—H570.9900
C3—C41.433 (3)C43—H580.9900
C5—C71.360 (3)C44—H590.9900
C5—C61.436 (3)C44—H600.9900
C7—C81.438 (3)C45—H610.9900
C9—C111.364 (3)C45—H620.9900
C9—C101.437 (3)C46—H630.9900
C11—C121.441 (3)C46—H640.9900
C4···C11i3.371 (3)N2···C12i3.324 (3)
S1—Fe1—S387.51 (3)O1—C17—H6110.5
S1—Fe1—S4151.95 (3)C18—C17—H6110.5
S3—Fe1—S490.01 (3)H5—C17—H6108.7
S1—Fe1—S290.01 (3)O2—C18—H7110.3
S3—Fe1—S2170.42 (3)C17—C18—H7110.3
S4—Fe1—S287.84 (3)O2—C18—H8110.3
S1—Fe1—S2i101.79 (2)C17—C18—H8110.3
S3—Fe1—S2i94.92 (2)H7—C18—H8108.6
S4—Fe1—S2i106.26 (2)O2—C19—H9110.3
S2—Fe1—S2i94.64 (2)C20—C19—H9110.3
S5—Fe2—S884.05 (3)O2—C19—H10110.3
S5—Fe2—S7154.50 (3)C20—C19—H10110.3
S8—Fe2—S790.07 (3)H9—C19—H10108.6
S5—Fe2—S689.71 (3)O3—C20—H11110.6
S8—Fe2—S6165.16 (3)C19—C20—H11110.6
S7—Fe2—S689.83 (3)O3—C20—H12110.6
S5—Fe2—S8ii106.02 (3)C19—C20—H12110.6
S8—Fe2—S8ii100.53 (2)H11—C20—H12108.8
S7—Fe2—S8ii99.45 (2)O3—C21—H13110.0
S6—Fe2—S8ii94.12 (2)C22—C21—H13110.0
O7—Fe3—O6175.32 (8)O3—C21—H14110.0
O7—Fe3—O385.97 (7)C22—C21—H14110.0
O6—Fe3—O390.30 (7)H13—C21—H14108.4
O7—Fe3—O295.17 (6)O4—C22—H15110.4
O6—Fe3—O286.44 (6)C21—C22—H15110.4
O3—Fe3—O273.20 (6)O4—C22—H16110.4
O7—Fe3—O596.00 (7)C21—C22—H16110.4
O6—Fe3—O585.49 (7)H15—C22—H16108.6
O3—Fe3—O5145.53 (6)O4—C23—H17110.5
O2—Fe3—O5140.31 (6)C24—C23—H17110.5
O7—Fe3—O488.91 (7)O4—C23—H18110.5
O6—Fe3—O487.24 (6)C24—C23—H18110.5
O3—Fe3—O471.75 (6)H17—C23—H18108.7
O2—Fe3—O4144.31 (6)O5—C24—H19110.5
O5—Fe3—O473.88 (6)C23—C24—H19110.5
O7—Fe3—O181.72 (7)O5—C24—H20110.5
O6—Fe3—O1102.96 (7)C23—C24—H20110.5
O3—Fe3—O1142.47 (6)H19—C24—H20108.7
O2—Fe3—O172.80 (6)O5—C25—H21110.6
O5—Fe3—O171.34 (6)C26—C25—H21110.6
O4—Fe3—O1142.68 (6)O5—C25—H22110.6
C1—S1—Fe1103.91 (8)C26—C25—H22110.6
C3—S2—Fe1104.00 (8)H21—C25—H22108.7
C3—S2—Fe1i101.30 (7)O1—C26—H23110.6
Fe1—S2—Fe1i85.36 (2)C25—C26—H23110.6
C5—S3—Fe1103.81 (8)O1—C26—H24110.6
C7—S4—Fe1103.51 (8)C25—C26—H24110.6
C9—S5—Fe2103.76 (8)H23—C26—H24108.8
C11—S6—Fe2103.57 (8)O8—C27—H25109.8
C13—S7—Fe2103.41 (8)C28—C27—H25109.8
C15—S8—Fe2104.36 (8)O8—C27—H26109.8
C15—S8—Fe2ii101.71 (7)C28—C27—H26109.8
Fe2—S8—Fe2ii79.47 (2)H25—C27—H26108.2
C26—O1—C17114.36 (18)O9—C28—H27109.9
C26—O1—Fe3115.32 (13)C27—C28—H27109.9
C17—O1—Fe3112.03 (13)O9—C28—H28109.9
C18—O2—C19113.03 (17)C27—C28—H28109.9
C18—O2—Fe3114.53 (13)H27—C28—H28108.3
C19—O2—Fe3112.99 (14)O9—C29—H29109.9
C20—O3—C21119.59 (18)C30—C29—H29109.9
C20—O3—Fe3116.11 (14)O9—C29—H30109.9
C21—O3—Fe3119.02 (14)C30—C29—H30109.9
C22—O4—C23112.99 (17)H29—C29—H30108.3
C22—O4—Fe3111.40 (13)O10—C30—H31109.8
C23—O4—Fe3111.10 (14)C29—C30—H31109.8
C25—O5—C24113.00 (18)O10—C30—H32109.8
C25—O5—Fe3113.80 (13)C29—C30—H32109.8
C24—O5—Fe3112.14 (13)H31—C30—H32108.3
Fe3—O6—H2124 (2)O10—C31—H33109.1
Fe3—O6—H1120 (2)C32—C31—H33109.1
H2—O6—H1113 (3)O10—C31—H34109.1
Fe3—O7—H4121.0 (19)C32—C31—H34109.1
Fe3—O7—H3128 (2)H33—C31—H34107.8
H4—O7—H3111 (3)O11—C32—H35110.2
C27—O8—C36113.86 (17)C31—C32—H35110.2
C28—O9—C29112.48 (18)O11—C32—H36110.2
C31—O10—C30112.41 (18)C31—C32—H36110.2
C32—O11—C33113.93 (18)H35—C32—H36108.5
C34—O12—C35112.55 (18)O11—C33—H37109.0
C37—O13—C46113.73 (18)C34—C33—H37109.0
C38—O14—C39113.71 (18)O11—C33—H38109.0
C40—O15—C41111.87 (17)C34—C33—H38109.0
C43—O16—C42114.19 (17)H37—C33—H38107.8
C44—O17—C45112.39 (18)O12—C34—H39109.8
C3—C1—C2120.5 (2)C33—C34—H39109.8
C3—C1—S1122.47 (17)O12—C34—H40109.8
C2—C1—S1117.02 (17)C33—C34—H40109.8
N1—C2—C1177.9 (3)H39—C34—H40108.2
C1—C3—C4122.3 (2)O12—C35—H41110.1
C1—C3—S2119.58 (17)C36—C35—H41110.1
C4—C3—S2118.11 (17)O12—C35—H42110.1
N2—C4—C3179.0 (3)C36—C35—H42110.1
C7—C5—C6120.8 (2)H41—C35—H42108.4
C7—C5—S3120.88 (17)O8—C36—H43109.3
C6—C5—S3118.28 (17)C35—C36—H43109.3
N3—C6—C5179.2 (3)O8—C36—H44109.3
C5—C7—C8121.3 (2)C35—C36—H44109.3
C5—C7—S4121.04 (18)H43—C36—H44107.9
C8—C7—S4117.69 (17)O13—C37—H45109.0
N4—C8—C7179.0 (3)C38—C37—H45109.0
C11—C9—C10122.2 (2)O13—C37—H46109.0
C11—C9—S5121.24 (17)C38—C37—H46109.0
C10—C9—S5116.52 (17)H45—C37—H46107.8
N5—C10—C9177.5 (2)O14—C38—H47110.1
C9—C11—C12120.4 (2)C37—C38—H47110.1
C9—C11—S6120.49 (17)O14—C38—H48110.1
C12—C11—S6119.10 (17)C37—C38—H48110.1
N6—C12—C11178.1 (2)H47—C38—H48108.4
C15—C13—C14119.2 (2)O14—C39—H49108.9
C15—C13—S7122.57 (18)C40—C39—H49108.9
C14—C13—S7118.24 (17)O14—C39—H50108.9
N7—C14—C13178.3 (3)C40—C39—H50108.9
C13—C15—C16122.6 (2)H49—C39—H50107.7
C13—C15—S8119.59 (17)O15—C40—H51110.0
C16—C15—S8117.83 (17)C39—C40—H51110.0
N8—C16—C15178.1 (2)O15—C40—H52110.0
O1—C17—C18106.28 (19)C39—C40—H52110.0
O2—C18—C17106.92 (18)H51—C40—H52108.4
O2—C19—C20106.86 (18)O15—C41—H53110.1
O3—C20—C19105.52 (18)C42—C41—H53110.1
O3—C21—C22108.28 (19)O15—C41—H54110.1
O4—C22—C21106.68 (18)C42—C41—H54110.1
O4—C23—C24106.14 (19)H53—C41—H54108.4
O5—C24—C23106.27 (19)O16—C42—H55109.2
O5—C25—C26105.92 (18)C41—C42—H55109.2
O1—C26—C25105.49 (18)O16—C42—H56109.2
O8—C27—C28109.37 (19)C41—C42—H56109.2
O9—C28—C27108.80 (19)H55—C42—H56107.9
O9—C29—C30108.8 (2)O16—C43—H57110.0
O10—C30—C29109.27 (19)C44—C43—H57110.0
O10—C31—C32112.7 (2)O16—C43—H58110.0
O11—C32—C31107.37 (19)C44—C43—H58110.0
O11—C33—C34112.8 (2)H57—C43—H58108.3
O12—C34—C33109.38 (19)O17—C44—H59110.1
O12—C35—C36108.10 (19)C43—C44—H59110.1
O8—C36—C35111.76 (19)O17—C44—H60110.1
O13—C37—C38113.0 (2)C43—C44—H60110.1
O14—C38—C37108.11 (18)H59—C44—H60108.4
O14—C39—C40113.3 (2)O17—C45—H61110.0
O15—C40—C39108.38 (19)C46—C45—H61110.0
O15—C41—C42108.18 (18)O17—C45—H62110.0
O16—C42—C41112.00 (19)C46—C45—H62110.0
O16—C43—C44108.68 (19)H61—C45—H62108.3
O17—C44—C43107.9 (2)O13—C46—H63109.9
O17—C45—C46108.6 (2)C45—C46—H63109.9
O13—C46—C45108.75 (19)O13—C46—H64109.9
O1—C17—H5110.5C45—C46—H64109.9
C18—C17—H5110.5H63—C46—H64108.3
C2—C1—C3—C41.9 (3)C36—O8—C27—C28156.54 (19)
S1—C1—C3—C4177.16 (16)C29—O9—C28—C27174.85 (18)
C2—C1—C3—S2179.80 (16)O8—C27—C28—O966.3 (2)
S1—C1—C3—S20.7 (3)C28—O9—C29—C30170.43 (19)
C6—C5—C7—C81.2 (3)C31—O10—C30—C29168.56 (19)
S3—C5—C7—C8178.97 (17)O9—C29—C30—O1071.8 (2)
C6—C5—C7—S4179.64 (16)C30—O10—C31—C3285.3 (2)
S3—C5—C7—S40.2 (3)C33—O11—C32—C31173.8 (2)
C10—C9—C11—C122.2 (3)O10—C31—C32—O1164.8 (3)
S5—C9—C11—C12178.91 (16)C32—O11—C33—C3487.5 (2)
C10—C9—C11—S6177.08 (16)C35—O12—C34—C33178.1 (2)
S5—C9—C11—S61.8 (3)O11—C33—C34—O1265.9 (3)
C14—C13—C15—C162.5 (3)C34—O12—C35—C36166.9 (2)
S7—C13—C15—C16176.80 (16)C27—O8—C36—C3580.4 (2)
C14—C13—C15—S8179.67 (16)O12—C35—C36—O865.5 (3)
S7—C13—C15—S81.0 (3)C46—O13—C37—C3882.9 (2)
C26—O1—C17—C18179.23 (18)C39—O14—C38—C37170.0 (2)
C19—O2—C18—C17174.47 (18)O13—C37—C38—O1468.0 (3)
O1—C17—C18—O257.2 (2)C38—O14—C39—C4087.2 (2)
C18—O2—C19—C20177.03 (18)C41—O15—C40—C39178.36 (19)
C21—O3—C20—C19165.03 (19)O14—C39—C40—O1564.8 (3)
O2—C19—C20—O354.1 (2)C40—O15—C41—C42165.94 (19)
C20—O3—C21—C22133.0 (2)C43—O16—C42—C4182.2 (2)
C23—O4—C22—C21177.92 (19)O15—C41—C42—O1667.1 (2)
O3—C21—C22—O445.8 (2)C42—O16—C43—C44156.26 (19)
C22—O4—C23—C24174.18 (19)C45—O17—C44—C43175.73 (19)
C25—O5—C24—C23174.64 (19)O16—C43—C44—O1766.8 (2)
O4—C23—C24—O560.5 (2)C44—O17—C45—C46166.12 (19)
C24—O5—C25—C26179.14 (18)C37—O13—C46—C45171.56 (19)
C17—O1—C26—C25172.13 (18)O17—C45—C46—O1371.7 (2)
O5—C25—C26—O156.7 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···O80.78 (3)1.96 (3)2.726 (3)171 (3)
O6—H2···O100.76 (3)2.13 (3)2.882 (2)173 (3)
O7—H3···O130.76 (3)2.04 (3)2.779 (2)164 (3)
O7—H4···O160.81 (3)1.94 (3)2.740 (2)170 (3)

Experimental details

Crystal data
Chemical formula[Fe(C10H20O5)(H2O)2][Fe2(C4N2S2)4]·2C10H20O5
Mr1425.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.376 (4), 15.739 (4), 30.069 (8)
β (°) 91.600 (4)
V3)6328 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.20 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.742, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
68765, 13837, 10591
Rint0.056
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.073, 1.04
No. of reflections13837
No. of parameters755
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···O80.78 (3)1.96 (3)2.726 (3)171 (3)
O6—H2···O100.76 (3)2.13 (3)2.882 (2)173 (3)
O7—H3···O130.76 (3)2.04 (3)2.779 (2)164 (3)
O7—H4···O160.81 (3)1.94 (3)2.740 (2)170 (3)
 

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (A) (No. 17205008), a Grant-in-Aid for Specially Promoted Research (No. 18002016), and a Grant-in-Aid for the Global COE Program ('Science for Future Molecular Systems') from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAdams, M. W. W. (1990). Biochim. Biophys. Acta, 1020, 115–145.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrey, M. (2002). ChemBioChem, 3, 153–160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeorgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238–239, 255–266.  Web of Science CrossRef CAS Google Scholar
First citationGloaguen, F., Lawrence, J. D. & Rauchfuss, T. B. (2001). J. Am. Chem. Soc. 123, 9476–9477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamilton, W. C. & Bernal, I. (1967). Inorg. Chem. 6, 2003–2008.  CSD CrossRef CAS Web of Science Google Scholar
First citationHao, X., Siegler, M. A., Parkin, S. & Brock, C. P. (2005). Cryst. Growth Des. 5, 2225–2232.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, X., Ibrahim, S. K., Tard, C. & Pickett, C. J. (2005). Coord. Chem. Rev. 249, 1641–1652.  Web of Science CrossRef CAS Google Scholar
First citationMcCleverty, J. A., Atherton, N. M., Locke, J., Wharton, E. J. & Winscom, C. J. (1967). J. Am. Chem. Soc. 89, 6082–6092.  CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNa, Y., Wang, M., Jin, K., Zhang, R. & Sun, L. (2006). J. Organomet. Chem. 691, 5045–5051.  Web of Science CrossRef CAS Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSakai, K. (2004). KENX. Kyushu University, Japan.  Google Scholar
First citationSakata, T. (2000). Bull. Chem. Soc. Jpn, 73, 297–305.  Web of Science CrossRef CAS Google Scholar
First citationSellmann, D., Geck, M. & Moll, M. (1991). J. Am. Chem. Soc. 113, 5259–5264.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., Åkermark, B. & Ott, S. (2005). Coord. Chem. Rev. 249, 1653–1663.  Web of Science CrossRef CAS Google Scholar
First citationTrasatti, S. (1972). J. Electroanal. Chem. 39, 163–184.  CrossRef CAS Web of Science Google Scholar
First citationYamaguchi, T., Masaoka, S. & Sakai, K. (2008). Unpublished results.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1557-m1558
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds